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Pandas for 
“Dummies”*

* The title is clearly a lie – Pandas is quite tricky
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Why Pandas?
● You need a specialised toolkit for data 

analysis
● It’s a Python library so it’s easy to integrate 

other Python goodness
● custom functions
● other Python libraries
● plotting etc
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Why not Pandas?
● Pure Python might be better - Pandas might 

be overkill in your case
● SQL might be better in your case

● SQL is sufficient for the analysis you are conducting
● You might be more familiar with SQL
● Other people in your team are more familiar with SQL
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Is Pandas easy 
to learn?
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Is Pandas easy 
to learn?

Short answer: No
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Is Pandas easy 
to learn?

The long answer is the rest
of the presentation ;-)



Qriou
s

Ted Petrou https://medium.com/dunder-data/minimally-sufficient-pandas

“Pandas is
 powerful but
 difficult to use”
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“[In Python] There should be one-- and preferably
 only one --obvious way to do it”
  Tim Peters – The Zen of Python

“I find that the Pandas library disobeys this [obviousness] 
guidance more than any other library I have encountered”
  Ted Petrous – Minimally Sufficient Pandas

But in Pandas there are often many ways of 
achieving the same result – typically only 

obvious to experienced Pandas practitioners
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Ted Petrou https://medium.com/dunder-data/minimally-sufficient-pandas

“Pandas is
 powerful but
 difficult to use”
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Pandas may or may not be 
intuitive to you
● Numpy or matrices experience? Pandas is built on 

Numpy so Numpy is a good starting point
● SQL experience? Very different but some great 

resources*
● R data frame experience? Helps and hurts.
● Python experience? Helps and hurts.
* A very different approach but there is good help for the transition. See:
   https://medium.com/jbennetcodes/how-to-rewrite-your-sql-queries-in-pandas-and-more-149d341fc53e
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Ted Petrou https://medium.com/dunder-data/minimally-sufficient-pandas

“Pandas is
 powerful but
 difficult to use”
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80/20 rule
● Pandas has a very rich and expressive syntax
● But it is like learning a completely new language

● even if you already know Python
● sometimes contradicts Python conventions

● The 80/20 rule applies – you can get 80% done
knowing only 20%

● But what a 20% it is! The minimum amount of understanding 
required to be comfortable with Pandas is reasonably high

● Dangerous being a “Stack Overflow” Pandas coder
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                           Pandas Coder

Symptoms
● Never sure why code actually works
● Actually, not even sure if code does work
● Will try random changes (adding brackets, removing brackets, 

axis=0 becomes 1 and back again etc) in hope it will fix things
● Unable to safely change Pandas code without lots of checking
● Code riddled with non-obviousness resulting in bewildering bugs

        

Moto - “Hmmmm - I wonder if this will work?”
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                           Pandas Coder        

● Possibly safe when:
● Checking results in Jupyter Notebook as you go
● Small datasets where errors are easy to see
● Nobody else has to work on the code later

● But not safe for production code
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Key Pandas concepts are your pitons
● Don’t hope your code 

is doing the right thing

● Know your code is 
correct through 
confident reasoning 
from solid knowledge

● Pandas has gotchas 
which make this 
challenging

A piton
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aspects of Pandas
it pays to properly 
understand**

** i.e. have such a rock-solid understanding of the concepts that
       you can reason about what your code will do with confidence

8
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● You won’t remember most of this

● Focus on general concepts / terms so you can 
look up details later and refresh your memory

Key insights
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DataFrames are tables on steroids

fname lname age
0 Sam Smith 23
1 Jo Singh 12
...

Columns

Rows

1
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DataFrames are tables on steroids

fname lname age
0 Sam Smith 23
1 Jo Singh 12
...

Columns

Rows

Indexes

1

Column labels
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DataFrames are tables on steroids

fname lname age
0 Sam Smith 23
1 Jo Singh 12
...

Columns

Rows

Indexes

Built-in 
functionality

1

Column labels
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Using DataFrames
Lots of handy, built-in methods e.g.

.groupby()

.to_csv()

.multiply()

.fillna()

.transpose()

.pivot()

Tricky operation made easy and semantic in 
Pandas – you don’t have to work through the 

code to understand what is happening
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Creating DataFrames
Multiple ways to create data frames e.g.
● List of row tuples
df = pd.DataFrame([(1,2), (3,4)], columns=['a', 'b'])

    See docs on pd.DataFrame.from_records()

● Dict of columns
df = pd.DataFrame({'a': (1,2), 'b': (3,4)})

    See docs on pd.DataFrame.from_dict()

● Read a CSV file
df = pd.read_csv('data.csv')
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DataFrames are a collection of 
labelled Series

Jo

Sam

Raj

Moana

name

23

45

12

67

age

Auckland

Christchurch

Dunedin

Wellington

city

df = (              )

df.age = 23 45 12 67

Each column is 
a labelled Series

A Series is like a 
list on steroids
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Your assumptions about 
row indexes & col labels
are probably false

2
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No guarantee of uniqueness

country region country

2 NZ Auckland NZ

1 UK Essex UK

2 Canada Victoria Canada

15 USA Maine USA

0 USA Maine USA

0 Canada Ontario Canada

Column labels not 
guaranteed to be 

unique

Row indexes 
not guaranteed 

to be unique



Qriou
s

No guarantee of order

country region country

2 NZ Auckland NZ

1 UK Essex UK

2 Canada Victoria Canada

15 USA Maine USA

0 USA Maine USA

0 Canada Ontario Canada

Legitimate, but 
unordered index
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No guarantee of order
Indexes 2, 1, 2, 15, 0, 0 !

df.loc[0] isn’t the first row?! And it’s actually two rows?!
I thought Pandas was like Python! Come back SQL – all is forgiven!

country region country

2 NZ Auckland NZ

1 UK Essex UK

2 Canada Victoria Canada

15 USA Maine USA

0 USA Maine USA

0 Canada Ontario Canada
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Default behaviour misleading
Default indexes and column labels are zero-based indexes e.g.

df = pd.DataFrame([('a', 'b', 'c'), ('d', 'e', 'f')])

                           0  1  2

                        0  a  b  c

                        1  d  e  f

But once defined they are arbitrary labels and can be put out of 
order, repeated etc. E.g. df = df.append([('x', 'y', 'z'),])

                      0  x  y  z

Not explicitly 
defining an index 
or column labels

Index and column 
labels automatically 

added

0 again!
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Training often correct but misleading

1) slicing example

2) item selection example

From a Jupyter Notebook in an 
on-line tutorial on Pandas
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Training often correct but misleading

To show the risks I’ve 
made versions of the df 
which have duplicate 

indexes – let’s see what 
happens

Version 1 – some 
duplicate 5s

Version 2 – 
all “a”s
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Training often correct but misleading

1) Correct – Pandas always 
takes first N – ignores index Note – df.loc[] 

behaves differently!
1) slicing example
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Training often correct but misleading

BUSTED!
Correct in example but misleading.
Pandas collects by index label (not 

position). Can contain duplicates or fail
More details later on how 

to avoid confusion

2) item selection example
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Indexing not like Python
● Totally unlike sequences in Python where 0 ALWAYS 

refers to the first item
● Thinking in Python can actually mislead you in Pandas

!=
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What to do?
df.reset_index() will set new zero-based index

Or when concatenating or appending, use ignore_index=True

But most importantly,

always remember: there are
no guarantees about 
uniqueness or order
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Axis 0 is downwards; Axis 1 is across

0

1

fname lname age

0 Sam Smith 23

1 Jo Singh 12

...

3
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df.sum(axis=0) 0 a b c

0 10 15 23

1 25 3 12

35 ,    18 ,   35

E.g. axis & .sum( )

Sum values
downwards through rows 

i.e. sum the columns

Returns a Series
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df.sum(axis=0) 0 a b c

0 10 15 23

1 25 3 12

35      18     35

df.sum(axis=1)

Sum values across cols
i.e. sum rows

1

E.g. axis & .sum( )

a b c

0 10 15 23

1 25 3 12

48

40

Sum values
downwards through rows 

i.e. sum the columns
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df.apply(max, axis=0) 0 a b c

0 10 15 23

1 25 3 12

df.apply(max, axis=1)

Apply function to values 
across cols i.e. values in a row 1

Same with axis & .apply( )

a b c

0 10 15 23

1 25 3 12

Apply function to values 
going downwards i.e. 

per column 25      15     23

23

25

The max of each col



Qriou
s

0  downwards

1       across
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Operations can apply to multiple values at once

Can make a change to all elements in a table at 
once without looping through rows and columns
E.g. multiplying everything by 10 all at once

2.5 3.6

1.2 11.09 * 10 =
25 36

12 110.9

4
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● Multi-element operations are one of the coolest things 
about Pandas

● But with great power
comes great pain ;-)

● Code can be hard to interpret

● Fortunately, a clear understanding
of key concepts really helps

Key insights
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Terminology
● Pandas has vector operations

● about super-efficient, all-at-once operations
● about what happens under the hood – not just a synonym for 

operations which propagate across axes or elements
● Changes propagate (whether across an axis or 

individual elements in an axis / series)
● We broadcast changes across an axis

(specifically about operations between Series and 
Data Frames in Pandas)

● Element-wise operations process every indiv value
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Element-wise functions
● Element-wise functions operate on every individual element

e.g. Numpy’s absolute value function:

2 111

-1 -100

● Pandas also has a syntax for applying functions to entire 
columns or rows

np.abs(       )

=
2 111

1 100

np.abs(2) np.abs(111)

np.abs(-1) np.abs(-100)=
Like running the function on 
each value separately but 

optimised for efficiency
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Standard row or col functions
● .sum(), for example, automatically sums per column

● .sum() also totals rows if axis = 1  e.g. .sum(axis=1)

20 404

30 101 ).sum()(

= 50 505

20

30sum(   )
404

101sum(   )=

Axis 0 is the default

Summing all values 
downwards by column

A Series – only one 
axis – like a list
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Pandas can combine individual values & 
aggregates through vectorisation
● df / df.sum() does something interesting and useful
● Every column in df is divided by the sum of that column
● And because division is vectorised, it is like dividing  

every value in the column by the sum of that column
● Nice – we have a column % :-)
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Pandas can combine individual values & 
aggregates through vectorisation
● df / df.sum() does something interesting and useful
● Every column in df is divided by the sum of that column
● And because division is vectorised, it is like dividing  

every value in the column by the sum of that column
● Nice – we have a column % :-)
● Confused? Once again with pictures!
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Example combining indiv values & aggregates
20 404

30 101

20 404

30 101/      .sum()1) df / df.sum()
(same as df / df.sum(axis=0)
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Example combining indiv values & aggregates
20 404

30 101

20 404

30 101/      .sum()
20 404

30 101
  20
  30

  404
  101

(  ).sum() (   ).sum()/

1) df / df.sum()
(same as df / df.sum(axis=0)

2) .sum() applied downwards
    in df i.e. to each column

Resolving denominator first

Tackle numerator later
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Example combining indiv values & aggregates
20 404

30 101

20 404

30 101/      .sum()
20 404

30 101
  20
  30

  404
  101

(  ).sum() (   ).sum()/

  50   505
20 404

30 101 //

1) df / df.sum()
(same as df / df.sum(axis=0)

2) .sum() applied downwards
     in df i.e. to each column

3) Series returned
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Example combining indiv values & aggregates
20 404

30 101

20 404

30 101/      .sum()
20 404

30 101
  20
  30

  404
  101

(  ).sum() (   ).sum()/

  50   505
20 404

30 101 /

 20
 30

  404
  101(  ) / 50 (   ) / 505

/

1) df / df.sum()
(same as df / df.sum(axis=0)

2) .sum() applied downwards
     in df i.e. to each column

3) Series returned

4) Division of each col by
      matching sum val in series

We broadcast the Series [50, 505] 
across the df columns.

More on broadcasting later.
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Example combining indiv values & aggregates
20 404

30 101

20 404

30 101/      .sum()
20 404

30 101
  20
  30

  404
  101

(  ).sum() (   ).sum()/

  50   505
20 404

30 101 /

 20
 30

  404
  101(  ) / 50 (   ) / 505

20 / 50 404 / 505

30 / 50 101 / 505

/

20 / 50 404 / 505

30 / 50 101 / 505

1) df / df.sum()
(same as df / df.sum(axis=0)

2) .sum() applied downwards
    in df i.e. to each column

3) Series returned

4) Division of each col by
      matching sum val in series

5)  Same as div of each val in col
     by matching sum val in series
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Example combining indiv values & aggregates
20 404

30 101

20 404

30 101/      .sum()
20 404

30 101
  20
  30

  404
  101

(  ).sum() (   ).sum()/

  50   505
20 404

30 101 /

 20
 30

  404
  101(  ) / 50 (   ) / 505

20 / 50 404 / 505

30 / 50 101 / 505

/

20 / 50 404 / 505

30 / 50 101 / 505

0.4 0.8

0.6 0.2

1) df / df.sum()
(same as df / df.sum(axis=0)

2) .sum() applied downwards
     in df i.e. to each column

3) Series returned

4) Division of each col by
      matching sum val in series

5)  Same as div of each val in col
     by matching sum val in series

6) SUCCESS!!
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Example combining indiv values & aggregates
  df / df.sum()

Note - there is a safer and more 
readable way of writing this

I’ll demonstrate soon

You’ll find lots of code like this in 
Stack Overflow so you might as well 

be a little bit familiar with it
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Qrious

Broadcasting safety 
message

© 2019 Qrious
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Broadcasting step by step

1 2

3 4

5 6

7 8

9 10

11 12

+ 10 100 =
11 102

13 104

15 106

17 108

19 110

21 112

Refresher – broadcasting is applying an operation (e.g. 
addition) between a Series and a Data Frame
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Broadcasting step by step

10 100 =
11 102

13 104

15 106

17 108

19 110

21 112

10 100

1 2

3 4

5 6

7 8

9 10

11 12

Matches axis 1
and broadcasts
downwards along axis 0

1 2

3 4

5 6

7 8

9 10

11 12

1 2

3 4

5 6

7 8

9 10

11 12

+

result
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Broadcasting step by step

10 100 =
11 102

13 104

15 106

17 108

19 110

21 112

10 100

1 2

3 4

5 6

7 8

9 10

11 12

11 102

3 4

5 6

7 8

9 10

11 12

+
1 2

3 4

5 6

7 8

9 10

11 12

+

result
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Broadcasting step by step

10 100 =
11 102

13 104

15 106

17 108

19 110

21 112

10 100

1 2

3 4

5 6

7 8

9 10

11 12

11 102

13 104

5 6

7 8

9 10

11 12

1 2

3 4

5 6

7 8

9 10

11 12

+
+

result
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Broadcasting step by step

10 100 =
11 102

13 104

15 106

17 108

19 110

21 112

10 100

1 2

3 4

5 6

7 8

9 10

11 12

11 102

13 104

15 106

7 8

9 10

11 12

1 2

3 4

5 6

7 8

9 10

11 12

+
+

result
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Broadcasting step by step

10 100 =
11 102

13 104

15 106

17 108

19 110

21 112

10 100

1 2

3 4

5 6

7 8

9 10

11 12

11 102

13 104

15 106

17 108

9 10

11 12

1 2

3 4

5 6

7 8

9 10

11 12

+
+

result
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Broadcasting step by step

10 100 =
11 102

13 104

15 106

17 108

19 110

21 112

10 100

1 2

3 4

5 6

7 8

9 10

11 12

11 102

13 104

15 106

17 108

19 110

11 12

1 2

3 4

5 6

7 8

9 10

11 12

+
+

result
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Broadcasting step by step

10 100 =
11 102

13 104

15 106

17 108

19 110

21 112

10 100

1 2

3 4

5 6

7 8

9 10

11 12

11 102

13 104

15 106

17 108

19 110

21 112

1 2

3 4

5 6

7 8

9 10

11 12

+
+

result
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Explicit syntax available
To specify matching axis explicitly use a different syntax

1 2

3 4

5 6

7 8

9 10

11 12

.add(    , axis=1) = 10 100

11 102

13 104

15 106

17 108

19 110

21 112Same result as earlier but 
matching axis is more explicit
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Can now broadcast across cols
Broadcasting is downwards by default – need to set
matching axis to 0 to broadcast across cols

1 2

3 4

5 6 .add(      , axis=0) = 10 100 1000

11 12

103 104

1005 1006
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Can now broadcast across cols
Broadcasting is downwards by default – need to set
matching axis to 0 to broadcast across cols

1 2

3 4

5 6 .add(      , axis=0) = 10 100 1000

11 12

103 104

1005 1006

10

100

1000

1 2

3 4

5 6

1 2

3 4

5 6

result
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Can now broadcast across cols
Broadcasting is downwards by default – need to set
matching axis to 0 to broadcast across cols

1 2

3 4

5 6 .add(      , axis=0) = 10 100 1000

11 12

103 104

1005 1006

10

100

1000

11 2

103 4

1005 6

+
1 2

3 4

5 6

result
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Can now broadcast across cols
Broadcasting is downwards by default – need to set
matching axis to 0 to broadcast across cols

1 2

3 4

5 6 .add(      , axis=0) = 10 100 1000

11 12

103 104

1005 1006

10

100

1000

11 12

103 104

1005 1006

+
1 2

3 4

5 6

result
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Explicit is better than implicit
If you don’t specify matching axis explicitly you might successfully 
broadcast down the wrong axis if the shape has the same number 
of rows and cols.

So ... in the interests of readable, maintainable code, always use the 
explicit syntax in code you are keeping / maintaining

And remember – you are specifying the matching axis, not what it is 
broadcasting over

Note – the default matching axis is 1 not 0

.add(    , axis=0)
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Improving code from an earlier slide

df / df.sum() Elegant but 
opaque
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Improving code from an earlier slide

df / df.sum()

df / df.sum(axis=0)

The creation of col 
totals is now explicit

is equivalent to
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Improving code from an earlier slide

df / df.sum()

df / df.sum(axis=0)

df.div(df.sum(axis=0), axis=1)

Everything explicit but mix of axis 
0 and 1 potentially confusing

is equivalent to

is equivalent to
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Improving code from an earlier slide

df / df.sum()

df / df.sum(axis=0)

df.div(df.sum(axis=0), axis=1)

s_col_tots = df.sum(axis=0)

df.div(s_col_tots, axis=1)

is equivalent to

is equivalent to

is equivalent to
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Improving code from an earlier slide

s_col_tots = df.sum(axis=0)

df.div(s_col_tots, axis=1)

This part is responsible for collecting col 
totals (summing downwards along axis 0). 

Nice and explicit.

Separate responsibilities 
– easier to understand
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Improving code from an earlier slide

s_col_tots = df.sum(axis=0)

df.div(s_col_tots, axis=1)

This part is responsible 
for dividing each value 

by its column total.

We can tell there is broadcasting – we are combining a 
DataFrame and a Series in the same (division) operation. 
Recognising broadcasting when you see it really helps.

It does this by broadcasting division of the col totals. 
The col totals match on the columns (axis 1) and 

broadcast downwards across axis 0. Success!
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Improving code from an earlier slide

s_col_tots = df.sum(axis=0)

df.div(s_col_tots, axis=1)

Still have to correctly interpret the code but at least 
now you have a fighting chance, step by step.
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Matching axis

1 2

3 4

5 6

7 8

9 10

10 100

When broadcasting, the Series must have the same length as the matching 
axis for the DataFrame

a
10 100 1000

b
10 100 1000 10000

c
10 100 1000 10000

d
10 100 1000 10000 100000

e

Series ‘a’ is the right length (2) to 
 match df axis 1 and broadcast 
downwards across axis 0. So

df.add(a, axis=1)
will work

df
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Matching axis

1 2

3 4

5 6

7 8

9 10

10 100

When broadcasting, the Series must have the same length as the matching 
axis for the DataFrame

a
10 100 1000

b
10 100 1000 10000

c
10 100 1000 10000

d
10 100 1000 10000 100000

ex x x

df

Don’t match either axis of df
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Matching axis

1 2

3 4

5 6

7 8

9 10

10 100

When broadcasting, the Series must have the same length as the matching 
axis for the DataFrame

a
10 100 1000

b
10 100 1000 10000

c
10 100 1000 10000

d
10 100 1000 10000 100000

e

df

Series ‘e’ is the right length
(5) to  match df axis 0 and
broadcast across
axis 1. So

df.add(e, axis=0)
will work.
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Qrious

.applymap( ), .apply( ), 
& functions

© 2019 Qrious
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.applymap( )
● Applies a function to every element in a data frame
● Don’t use applymap if there is a vectorised alternative. The 

vectorised version is easier to read, less typing, and much faster 
e.g. squaring every value
            
       

● Lambda (anonymous) functions are often used with .applymap() 
e.g. df.applymap( lambda x: x**2 )

● Must use .apply() instead for Series (in which case no axis 
needed or allowed)

xdf ** 2          df.applymap(lambda x: x**2)
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.apply( )
● .apply() also expects a function
● The function always processes either cols or rows

● ... so there needs to be an axis (0 is the default i.e. per 
column operations)

      e.g. df.apply(sum_the_row, axis=1)
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.apply( ) and Series
● Don’t accidentally run .apply(..., axis=...) on a 

Series – will get a possibly confusing error like
“ ’axis’ is an invalid keyword argument”

● Sometimes .apply() is overkill

    df.age.apply(lambda x: x < 10)

  df.age < 10

are the same – both return a Series where age < 10

Preferred – 
easier to read
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.apply( ) is flexible

The function supplied can work with:
● the row or col as a whole e.g.
col.sum( )

● or values identified by index (if in col)
or col label (if in row) e.g.
row['Sat'] + row['Sun']
row.Sat + row.Sun

● or a combination e.g.
row.Sat / row.sum()
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.apply( ) and propagating functions

● return x / x.sum( )
return col / col.sum()

● all individual values in the row or col if the function vectorises
e.g. multiplying each element by 4

return col * 4

x is commonly used but it is more explicit and 
readable to use col (or row) as appropriate

But ... if the function is vectorised then why use .apply()? Might be better 
to directly apply the function to the data frame! Faster, less typing, easier 
to read. Note – .apply() makes it easier to work with cols if you don’t 
want to transpose data – df / df.sum() etc apply division row-by-row.

Functions can (in effect) operate on individual values if they can be 
propagated across the row or col they operate on. E.g. division
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Why .apply( ) often works element-wise
If a function propagates it will effectively work element-wise
e.g. def square(item): return item ** 2

2 5

-1 -6
(      ).apply(square)

=
4 25

1 36

square(2) square(5)

square(-1) square(-6)=

2

-1
square(    )  square(    )

5

-6
=

Axis 0 (per column) is 
the default
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Functions with named values
Functions can reference labels in the row or column

df = pd.DataFrame([(12.5, 23), (17, 25)], columns=['Sat', 'Sun'])

    Sat  Sun
0  12.5   23
1  17.0   25

def get_weekend_tot(row):
    return row['Sat'] + row['Sun']

df['weekend'] = df.apply(get_weekend_tot, axis=1)

    Sat  Sun  weekend
0  12.5   23     35.5
1  17.0   25     42.0
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Functions that aggregate
Functions can aggregate the row or col or use aggregations

df = pd.DataFrame([(12.5, 23), (17, 25)], columns=['Sat', 'Sun'])

    Sat  Sun
0  12.5   23
1  17.0   25

def col_pct(col):
    return (100 * col) / col.sum()

df[['Sat col pct', 'Sun col pct']] = df.apply(
    col_pct, axis=0).round()

    Sat  Sun  Sat col pct  Sun col pct
0  12.5   23         42.0         48.0
1  17.0   25         58.0         52.0
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.loc[] is good for 
safely filtering
rows & columns

5
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Filtering can be by content or label
● Filtering by content

e.g. all rows where fruit is “banana”

● Filtering by label

e.g. all columns ending in “_monthly”

e.g. rows with index between 100 and 200
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Filtering options compared

df[]

df.loc[]

df.iloc[]

.filter()

df.query()
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Filtering options compared

df[]

df.loc[]

df.iloc[]

.filter()

df.query()

Filtering on data 
frame directly~

Only safe for column filtering when there are clear 
labels e.g. df['region']. Otherwise too many 

gotchas to be safe in production code
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Filtering options compared

df[]

df.loc[]

df.iloc[]

.filter()

df.query()

~
Flexible and explicit – 

recommended
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Filtering options compared

df[]

df.loc[]

df.iloc[]

.filter()

df.query()

~
Not  as useful as df.loc[ ] especially given 
availability of df.head( ) and df.tail( ). 

Probably more valuable in a focused 
mathematical / engineering contextx
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Filtering options compared

df[]

df.loc[]

df.iloc[]

.filter()

df.query()

~

Most semantic choice for 
label-based (col labels or 

row indexes) filtering

x
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Filtering options compared

df[]

df.loc[]

df.iloc[]

.filter()

df.query()

~

Newer addition to 
Pandas – has its own 

mini-language

x
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Filtering options compared

df[]

df.loc[]

df.iloc[]

.filter()

df.query()

General-purpose so 
the main focus here
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df.loc[[100, 300], ['b', 'c']]

Row filtering

Using .loc to filter rows and cols

Column filtering

Note – double 
square brackets
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The rows we want
[100, 300]

df.loc[[100, 300], ['b', 'c']]

a   b    c   d

  0

100

200

300

Using .loc to filter rows and cols
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df.loc[[100, 300], ['b', 'c']]

  0

100

200

300

a   b    c   d

The columns we want
['b', 'c']

Using .loc to filter rows and cols

a   b    c   d

  0

100

200

300
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df.loc[[100, 300], ['b', 'c']]

  0

100

200

300

a   b    c   d

Using .loc to filter rows and cols

a   b    c   d

  0

100

200

300

  0

100

200

300

a   b    c   d

The intersections of 
row and column 

filtering are selected
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Powerful but strange syntax
● Numpy-flavoured syntax for filtering

● whether you find that intuitive or not depends on your
previous experience

● Pandas filtering can be very different from Numpy filtering**
● Gotchas

● some design decisions for convenience at expense of consistency
● consistency with Numpy trumps consistency with Python

** Make a Numpy array and a Pandas DataFrame from the same date: data = [(1,2), (3,4), (5,6)]
When a Numpy array, np_data[1] = array([3, 4]) because 1 refers to the row index
When a Pandas DataFrame, df_data[1] = Pandas Series [2, 4, 6] because 1 refers to column label
Very different :-(
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.loc[ ] has square brackets
● Square brackets instead of parentheses

● Why? A Numpy-derived short-hand
e.g. instead of my_array[2][0] we write my_array[2, 0]

● Standard parentheses with named parameters such as 
rows and cols would have been more Pythonic i.e. 
readable
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.loc[ ] is label-based
● Selection is based on row indexes and/or column labels
● So if we have a data frame with 1, 3, 3 as index labels we can’t 

select df.loc[2] (or there will be a KeyError)

apple 1 2019 36.1 Jo

banana 2 2018 27.5 Moana

cherry 3 2019 19.7 Sam

fruit       num  date   weight  name

1

3

3

Available 
labels

● And if an index or col label is repeated, filtering will include 
everything that matches e.g. df.loc[3] will return two rows

● Slicing is by label so we cannot use [:-1] etc as in normal Python – it 
is actually from one label to another

Unless boolean filtering 
– more on that later
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Always rows first (then columns)
● This guarantee is what makes .loc[] the safe 

choice for production

● Not as explicit as keyword parameters in 
standard Python functions
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.loc[ ] always needs rows
Can’t just select columns using .loc[] - must use slice  :
to refer to all rows e.g.

df.loc[  :   ,  ['lname', 'fname']   ]

will return a data frame for the lname and fname 
columns only but for all rows

Row filtering Column filtering
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.loc[ ] is safer than df[ ]

● Narrows down the range of quirks to be understood – more than 
enough to master in .loc[]

● Mixing different approaches can be confusing – similar syntaxes 
yield completely different results

Don’t use df[] in production code for 
filtering by content. Use .loc[] or .query()
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Qrious

Gotchas** where similar syntax 
but very different results

© 2019 Qrious

** Identifying gotchas is not necessarily a criticism – sometimes design trade-offs have to be made 
and there are contradictory principles to achieve consistency with. But they are still gotchas ;-)
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[ ] vs .loc[ ]

● df[0] vs df.loc[0]

● df[0] is the column with the label 0 i.e. the Series [‘apple’, ‘cherry’]
● df.loc[0] is the row with the label 0 i.e. the Series [‘apple’, ‘banana’]

0 1

0 apple banana

1 cherry date
df = 

0 1

0 apple banana

1 cherry date

df.loc[0]

df[0]
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.loc[ ] vs .iloc[ ]

● df.loc[0:1] vs df.iloc[0:1]

● df.loc[0:1] includes both ends because it is label-based not
index-based so is [(‘apple’, ‘banana’), (‘cherry’, ‘date’)]

● df.iloc[0:1] excludes the final index value like typical Python so is
[(‘apple’, ‘banana’)] only

0 1

0 apple banana

1 cherry date

df = 

0 1

0 apple banana

1 cherry date
df.loc[0:1] df.iloc[0:1]
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Slicing confusion

● df[0] = ['apple', 'date']

● df[0:1] = ['apple', 'banana', 'cherry'] **

0 1 2

0 apple banana cherry

1 date elderberry fig

df = 

** Slicing inside df[ ] slices rows. The official justification - “This is provided largely as a convenience since it is such a common operation” 
https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html. The Pandas creator notes the tension in “Python for Data Analysis” - 
“This might seem inconsistent for some readers , but this syntax arose out of practicality and nothing more” (p.127)

0 1 2

0 apple banana cherry

1 date elderberry fig
df[0:1]

df[0]
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Qrious

More powerful filtering

© 2019 Qrious
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More powerful filtering
● Pandas allows very flexible filtering using .loc[ ]

● e.g. df.loc[
    (df.year.isin([2017, 2018])
     &
    (df.age == 'Senior')]

● More on that after discussion of boolean filtering

● Consider .query() as an alternative
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.query( )
● A mini-language e.g. backticks for column names with gaps,

@ for variables in scope etc

● Added more recently than .loc[ ] so using .query( ) doesn’t mean 
you can ignore .loc[ ] - it appears in examples, existing code etc

● Good documentation:

    https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.query.html 

    http://jose-coto.com/query-method-pandas
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.query( ) examples
● Example of .loc[ ] vs .query( ):

  grades_df.loc[grades_df.Test_3.isin([98, 99, 100])]

  grades_df.query("Test_3 in [98, 99, 100]")

● Can use “and” and “or” in query and usual operator precedence 

applies so no need to add extra parentheses (as in .loc[ ])

  df.query("year == 2019 and suburb in ('Mt Albert', 'Mt Eden')")

●
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Boolean filtering is important

F T TrueFalse

6
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Boolean filtering illustrated

apple 1 2019 36.1 Jo

banana 2 2018 27.5 Moana

cherry 3 2019 19.7 Sam

T F F T F

F T TrueFalse

Boolean 
array

Data 
frame
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Boolean filtering illustrated

apple 1 2019 36.1 Jo

banana 2 2018 27.5 Moana

cherry 3 2019 19.7 Sam

T F F T F

apple 36.1

banana 27.5

cherry 19.7

F T TrueFalse
Applying boolean 
array to  columns

“False” columns 
will be removed
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Boolean filtering illustrated

apple 1 2019 36.1 Jo

banana 2 2018 27.5 Moana

cherry 3 2019 19.7 Sam

T F F T F

apple 36.1

banana 27.5

cherry 19.7

apple 1 2019 36.1 Jo

banana 2 2018 27.5 Moana

cherry 3 2019 19.7 Sam

T

F

T

apple 1 2019 36.1 Jo

cherry 3 2019 19.7 Sam

F T TrueFalse

“False” rows will 
be removed

Boolean array 
applied to rows
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Must match dimensions of data in axis

apple 1 2019 36.1 Jo

banana 2 2018 27.5 Moana

cherry 3 2019 19.7 Sam

Obviously the boolean array needs to have the same 
number of values as the axis being filtered

xx

x
x

?
?

?
?
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Boolean filtering restrictions

apple 1 2019 36.1 Jo

banana 2 2018 27.5 Moana

cherry 3 2019 19.7 Sam

● Any single boolean filter is for rows or columns only
(not both at same time)

● Can’t apply a boolean matrix to filter the data frame the same way you 
might apply a data frame matrix to another data frame matrix

● But can use two boolean filters in .loc[] - one for rows and one for cols

fruit       num  date  weight  name

Can’t apply this 
DataFrame as a boolean 

filter, for example
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Conditional filtering is boolean filtering

apple 1 2019 36.1 Jo

banana 2 2018 27.5 Moana

cherry 3 2019 19.7 Sam

● You can have one boolean filter for rows in the first part of loc[ ]
and another by cols in the second

● e.g. filtering rows by fruit == ‘cherry’

and cols by columns.str.startswith(‘w’)

fruit       num  date   weight  name

apple

banana

cherry

fruit num date weight name
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Passing in boolean indexes

apple 1 2019 36.1 Jo

banana 2 2018 27.5 Moana

cherry 3 2019 19.7 Sam

The following are equivalent:
● df.loc[df.fruit == 'cherry', df.columns.str.startswith('w')]

● df.loc[          ,                             ]
apple

banana

cherry
fruit num date weight name

apple

banana

cherry

fruit num date weight name

   weight
0  19.7
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Multiple conditions
● Use parentheses
● Use parentheses (yes – seriously!)
● Don’t use and or or – instead use & and |
● e.g. df.loc[ (df.year == 2019) & (df.age == 'Senior') ]



Qriou
s

How a DataFrame is filtered affects 
what is returned

If filtering for one column only the default is to return a Series

data = [
    (1, 2),
    (3, 4),
]

df = DataFrame(data, columns=['a', 'b'])

df.loc[: , 'b']

Series [ 2, 4]

7
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Data = [
    (1, 2),
    (3, 4),
]

df = DataFrame(data, columns=['a', 'b'])

● To get back a DataFrame pass in a list of columns
(albeit with only one column inside)

df.loc[: , ['b'] ]

DataFrame [[2], [4]] (vs Series [ 2, 4])

● Sometimes .to_frame() will be useful to turn a series into a DataFrame

How to guarantee a DataFrame

Same source 
DataFrame
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Check if changes are persisting
● In Pandas it is not always clear if changes will persist or not
● df     0  1

    0  a  b
    1  c  d

● df.append([('e', 'f')]. ignore_index=True)

● df?        0  1                     0  1

       0  a  b        OR        0  a  b
       1  c  d                  1  c  d
                                2  e  f

8
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Check if changes are persisting
● In Pandas it is not always clear if changes are persisting or not
● df     0  1

    0  a  b
    1  c  d

● df.append([('e', 'f')]. ignore_index=True)

● df?        0  1                     0  1

       0  a  b        OR        0  a  b
       1  c  d                  1  c  d
                                2  e  f

8

x
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Filtering data frames returns views
● Applying an operation on a filtered data frame is operating on 

the same parts of the original data frame

i.e. what you do matters! If you want to operate on a copy, 
use .copy()
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If you’re not sure ...

 CHECK!
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Eight key concepts
1) DataFrames are enhanced tables with 

rows and columns (like spreadsheets)
2) Row indexes and column labels are not 

guaranteed unique or in order
3) Axis 0 is downwards through rows; axis 1 

is across columns
4) Operations can be applied to multiple 

elements / rows/ cols without looping

8
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Eight key concepts
5) Prefer .loc[ ] for filtering
6)Become comfortable with Boolean 

filtering
7) Know when you’re getting back a 

Series or a Data Frame
8)Ensure you know if changes are 

persisting or not

8
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Practical 
tasks
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CSVs – reading and writing
● pd.read_csv( )

● df.to_csv( ..., index=False)  ## index=False 
stops the index being added as the first column

● ‘sep’ and ‘delimiter’ are synonymous parameters
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Demo DataFrame for next slides
Source dataframe:
df
    year        city     suburb            club     age   freq  fees
0   2017    Auckland  Mt Albert            MABC  Senior   33.0  2000
1   2017    Auckland  Mt Albert            MABC  Junior   70.0  2300
2   2018    Auckland  Mt Albert            MABC  Senior   39.0  2100
3   2018    Auckland  Mt Albert            MABC  Junior    NaN  2450
4   2019    Auckland  Mt Albert            MABC  Senior   40.0  2200
5   2019    Auckland  Mt Albert            MABC  Junior   70.0  2750
6   2016    Auckland  Mt Albert            MABC  Senior   33.0  2000
7   2015    Auckland  Mt Albert            MABC  Junior   70.0  2300
8   2018    Auckland    Mt Eden  Gillies Ave BC  Senior  120.0  3000
9   2018    Auckland    Mt Eden  Gillies Ave BC  Junior  234.0  5000
10  2019    Auckland    Mt Eden  Gillies Ave BC  Senior  124.0  3100
11  2019    Auckland    Mt Eden  Gillies Ave BC  Junior  265.0  5575
12  2018  Wellington    Mirimar             MBC  Senior   67.0  1100
13  2018  Wellington    Mirimar             MBC  Junior  183.0  2200
14  2019  Wellington    Mirimar             MBC  Senior   66.0  1000
15  2019  Wellington    Mirimar             MBC  Junior  187.0  2350
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Making new calculated columns
df_extra = df.copy()

df_extra['tot_fees'] = (df_extra.fees * df_extra.freq).round()

Note – can’t use dot notation for new field’s name

df_extra.head(5)
   year      city     suburb  club     age  freq  fees  tot_fees
0  2017  Auckland  Mt Albert  MABC  Senior  33.0  2000   66000.0
1  2017  Auckland  Mt Albert  MABC  Junior  70.0  2300  161000.0
2  2018  Auckland  Mt Albert  MABC  Senior  39.0  2100   81900.0
3  2018  Auckland  Mt Albert  MABC  Junior   NaN  2450       NaN
4  2019  Auckland  Mt Albert  MABC  Senior  40.0  2200   88000.0

Note – we can’t .astype('int') tot_fees because of NaN in field
https://pandas.pydata.org/pandas-docs/stable/user_guide/gotchas.html#support-for-integer-na
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Controlling columns produced
● .drop( ) can drop individual columns or a list of columns e.g.
df.drop(columns='year')
df.drop(columns=['year', 'age'])

● The columns dropped are only actually removed from the data 
frame if we set inplace=True - otherwise it is only on what is returned

● When you calculate a new field you want to be able to give it a 
useful name. You may also want to override the names supplied in 
the original inputs. .rename( ) is useful e.g.
df.rename(columns={'year': 'year_of_play'})

● If you want to reset all the column names it might be easiest to set 
the columns attribute directly e.g. df.columns = [‘year_of_play’, etc]
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Grouping
● See https://www.shanelynn.ie/

summarising-aggregation-and-grouping-data-in-python-pandas/
● .groupby( ) returns a special DataFrameGroupBy object which you 

can't really "see" e.g. by printing it. But it lets you get all sorts of 
interesting results.

● The easiest is by using the .describe( ) method on it.
● Note - you can't filter describe to only display results for selected column labels only 

data types. To specify individual fields to use do filtering earlier
● Examples

● df.groupby('year').describe()
● df.loc[:, 'freq'].describe( )
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Grouping – selecting columns

df.loc[:, ['year', 'freq']].groupby('year').describe()

      freq                                                          
     count        mean        std   min    25%    50%     75%    max
year                                                                
2015   1.0   70.000000        NaN  70.0  70.00   70.0   70.00   70.0
2016   1.0   33.000000        NaN  33.0  33.00   33.0   33.00   33.0
2017   2.0   51.500000  26.162951  33.0  42.25   51.5   60.75   70.0
2018   5.0  128.600000  80.568604  39.0  67.00  120.0  183.00  234.0
2019   6.0  125.333333  86.226833  40.0  67.00   97.0  171.25  265.0

Filtered columns before passing 
through to .groupby( ) and .describe( )
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.count( )

df.groupby('year').count()
      city  suburb  club  age  freq  fees
year                                     
2015     1       1     1    1     1     1
2016     1       1     1    1     1     1
2017     2       2     2    2     2     2
2018     6       6     6    6     5     6
2019     6       6     6    6     6     6

.count() counts all NON-missing values whereas .size() counts 
ALL values including missing

There is one 
missing value 

in the freq 
column
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.size( )

df.groupby('year').size()
year
2015    1
2016    1
2017    2
2018    6
2019    6

.size( ) is for the df as a whole, not for each column
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.first( ) and .last( )

df.groupby('suburb').first()
           year        city            club     age   freq  fees
suburb                                                          
Mirimar    2018  Wellington             MBC  Senior   67.0  1100
Mt Albert  2017    Auckland            MABC  Senior   33.0  2000
Mt Eden    2018    Auckland  Gillies Ave BC  Senior  120.0  3000

These methods use the order of the data frame they are 
based on. You may need to apply sort_values( ) 
beforehand



Qriou
s

.min( ) and .max( )

df.groupby('suburb').min()
           year        city            club     age   freq  fees
suburb                                                          
Mirimar    2018  Wellington             MBC  Junior   66.0  1000
Mt Albert  2015    Auckland            MABC  Junior   33.0  2000
Mt Eden    2018    Auckland  Gillies Ave BC  Junior  120.0  3000

df.groupby('suburb').max()
           year        city            club     age   freq  fees
suburb                                                          
Mirimar    2019  Wellington             MBC  Senior  187.0  2350
Mt Albert  2019    Auckland            MABC  Senior   70.0  2750
Mt Eden    2019    Auckland  Gillies Ave BC  Senior  265.0  5575

Note that this method works on strings as well as 
numbers
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.groupby fields

df.groupby('city').sum()[['freq']].add_prefix('Sum_of_')

            Sum_of_freq
city                   
Auckland         1098.0
Wellington        503.0

Note that this method works on strings as well as 
numbers
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Flexible aggregation

df.groupby('city').agg({'fees': 'sum', 'freq': 'max'})
             fees   freq
city                    
Auckland    34775  265.0
Wellington   6650  187.0

We can get different aggregate types for different fields e.g. min for one 
and max for another. In SQL it is easy. How do we do it in pandas? We 
need to pass in a dictionary.

The result will have correct aggregate results but the labels will need 
fixing. Time to use .rename() again.
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Custom aggregation
Aggregation functions take in multiple items and 
return a single item e.g. mean handles the numbers 
in the aggregated field which are in the group and 
returns a single arithmetic mean

list deserves special mention – it gathers up the 
results into a single list

You can also use your own functions (named or 
anonymous lambdas) to do anything you want to 
the gathered values – as long as a single value is 
returned

2
716

43

[2, 16, 43, 7]
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Updating
df3 = df.copy()

df3.loc[3:4, ['fees', 'freq']] = df3.loc[3:4, ['fees', 'freq']].multiply(100)

df3.head(7)
   year      city     suburb  club     age    freq    fees
0  2017  Auckland  Mt Albert  MABC  Senior    33.0    2000
1  2017  Auckland  Mt Albert  MABC  Junior    70.0    2300
2  2018  Auckland  Mt Albert  MABC  Senior    39.0    2100
3  2018  Auckland  Mt Albert  MABC  Junior     NaN  245000
4  2019  Auckland  Mt Albert  MABC  Senior  4000.0  220000
5  2019  Auckland  Mt Albert  MABC  Junior    70.0    2750
6  2016  Auckland  Mt Albert  MABC  Senior    33.0    2000
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Union joining (appending)
● .concat([df1, df2, ...])

● axis=0 (rows) for appending (the default), axis = 1 
(columns) for putting alongside

● https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html

● Need same column names if trying to append
(unlike SQL UNION) – otherwise all NaNs in the
non-aligned cells
●
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Appending without compatible cols
Demo DataFrame to append:

●

df2 = pd.DataFrame(
    [[2020, 'Christchurch', 'Yaldhurst', 'YBC', 'Junior', 199, 2_700], ])

df2
      0             1          2    3       4    5     6
0  2020  Christchurch  Yaldhurst  YBC  Junior  199  2700

Note different column labels compared 
with df we’re concatenating with
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Faulty concatenated data

df3 = pd.concat([df2, df])

df3.head(3)
        0             1          2    3  ...    fees  freq     suburb    year
0  2020.0  Christchurch  Yaldhurst  YBC  ...     NaN   NaN        NaN     NaN
0     NaN           NaN        NaN  NaN  ...  2000.0  33.0  Mt Albert  2017.0
1     NaN           NaN        NaN  NaN  ...  2300.0  70.0  Mt Albert  2017.0

Oops! We have all the columns from both 
data frames and NaNs filling in all the 

mismatched areas :-(
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Correctly concatenated data
Ensuring compatible columns:
df2 = pd.DataFrame(
    [[2020, 'Christchurch', 'Yaldhurst', 'YBC', 'Junior', 199, 2_700], ],    
    columns=df.columns)

df2
   year          city     suburb club     age  freq  fees
0  2020  Christchurch  Yaldhurst  YBC  Junior   199  2700

df3 = pd.concat([df2, df])

Success because of aligned column names:
df3.head(3)
   year          city     suburb  club     age   freq  fees
0  2020  Christchurch  Yaldhurst   YBC  Junior  199.0  2700
0  2017      Auckland  Mt Albert  MABC  Senior   33.0  2000
1  2017      Auckland  Mt Albert  MABC  Junior   70.0  2300
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Labels matter, not order
Compatible columns but inconsistent order (swapped year and city):

df2 = pd.DataFrame(
    [['Christchurch', 2020, 'Yaldhurst', 'YBC', 'Junior', 199, 2_700], ],
    columns=['city', 'year', 'suburb', 'club', 'age', 'freq', 'fees'])

df2
           city  year     suburb club     age  freq  fees
0  Christchurch  2020  Yaldhurst  YBC  Junior   199  2700

df3 = pd.concat([df2, df], sort=False)

Succeeded even though columns out of order:
df3.head(3)
           city  year     suburb  club     age   freq  fees
0  Christchurch  2020  Yaldhurst   YBC  Junior  199.0  2700
0      Auckland  2017  Mt Albert  MABC  Senior   33.0  2000
1      Auckland  2017  Mt Albert  MABC  Junior   70.0  2300
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Joining on a key

● Like an inner join in SQL
● merge is what is usually needed unless joining on index 
( .join() will do )

● See https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html
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Example join
df2 = pd.DataFrame([('Auckland', 'Fuel tax'), ], columns=['city', 'Tax'])

df2
       city       Tax
0  Auckland  Fuel tax

pd.merge(left=df, right=df2, how='left', on='city')
    year        city     suburb            club     age   freq  fees       Tax
0   2017    Auckland  Mt Albert            MABC  Senior   33.0  2000  Fuel tax
1   2017    Auckland  Mt Albert            MABC  Junior   70.0  2300  Fuel tax
...
6   2016    Auckland  Mt Albert            MABC  Senior   33.0  2000  Fuel tax
7   2015    Auckland  Mt Albert            MABC  Junior   70.0  2300  Fuel tax
8   2018    Auckland    Mt Eden  Gillies Ave BC  Senior  120.0  3000  Fuel tax
...
11  2019    Auckland    Mt Eden  Gillies Ave BC  Junior  265.0  5575  Fuel tax
12  2018  Wellington    Mirimar             MBC  Senior   67.0  1100       NaN
...
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Column percentages
Strategy – make a data frame of calculated percentages 
and set it as a new column

df['pct_freq'] = (
    df.freq
    .apply(lambda col: (100 * col) / col.sum())
    .round(2)
)

df['pct_freq'] = (
    df.freq
    .multiply(100)
    .div(
        df.freq.sum()
    ).round(2)
)

Because df.freq is a Series .apply() 
will not accept an axis argument

A more elegant 
alternative
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Column percentages by group
Strategy – make df with totals by group and join it to df using group as key.
Then set new column to results of simple calculation of percentages.

df_yearly_freq_sum = (
    df.groupby(['year'])
    .agg({'freq': 'sum'})
    .add_prefix('tot_')
)

df_yearly_freq_sum
      tot_freq
year          
2015      70.0
2016      33.0
...

df3 = pd.merge(df, df_yearly_freq_sum, on='year')

Using an easily 
understood** join ready for 

simple percentage 
calculation

** Especially by people 
       with SQL experience
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Column percentages by group ...
df3['annual_freq_pct'] = (100*(df3.freq / df3.tot_freq)).round()

df3.loc[:, ['year', 'city', 'suburb', 'club', 'age', 'freq', 'annual_freq_pct']]
    .sort_values(['year', 'city', 'suburb', 'club', 'age'])
    .reset_index(drop=True).head()

   year      city     suburb  club     age  freq  annual_freq_pct
0  2015  Auckland  Mt Albert  MABC  Junior  70.0            100.0
1  2016  Auckland  Mt Albert  MABC  Senior  33.0            100.0
2  2017  Auckland  Mt Albert  MABC  Junior  70.0             68.0
3  2017  Auckland  Mt Albert  MABC  Senior  33.0             32.0
4  2018  Auckland  Mt Albert  MABC  Junior   NaN              NaN

Data frame already has 
percentages calculated – just 

selecting columns to display and 
resetting index after sorting

Tip - .reset_index() is also a 
great way of turning a multi-
index into columns (e.g. after 

a groupby operation)
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Row percentages
df_hrs = pd.DataFrame(
    [('Jo', 36, 6, 6, 6.5, 7, 5), ('Sam', 24, 4, 7, 7, 0, 4)],
    columns=['worker', 'age', 'mon', 'tue', 'wed', 'thur', 
'fri'])

df_hrs
  worker  age  mon  tue  wed  thur  fri
0     Jo   36    6    6  6.5     7    5
1    Sam   24    4    7  7.0     0    4

And make a spare one for a comparison later

df_hrs2 = df_hrs.copy()
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Row percentages ...
.sum( ) will total all numeric fields so you may need to filter the columns first. 
In this example we have added another numeric field we do not want 
included in total (age) but we have failed to filter it out from the data being 
summed.

df_hrs['tot_hrs'] = df_hrs.sum(axis=1)

df_hrs

  worker  age  mon  tue  wed  thur  fri  tot_hrs

0     Jo   36    6    6  6.5     7    5     66.5

1    Sam   24    4    7  7.0     0    4     46.0

Oops! Let’s do it again with age removed from the data being summed

x!
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Row percentages ...
df_hrs2['tot_hrs'] = df_hrs2.drop('age', axis=1).sum(axis=1)

df_hrs2

  worker  age  mon  tue  wed  thur  fri  tot_hrs

0     Jo   36    6    6  6.5     7    5     30.5

1    Sam   24    4    7  7.0     0    4     22.0
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Plotting two columns
from matplotlib import pyplot as plt

df = pd.DataFrame(
  {'day': [92, 250, 317,
     241, 503, 640, 444],
   'night': [156, 228, 300,
     178, 900, 87, 122]},
  index=['Mon', 'Tue',
    'Wed', 'Thu', 'Fri',
    'Sat', 'Sun'])
df.plot()
plt.ylim(0)
plt.show()
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Plotting result of aggregation
from matplotlib import pyplot as plt
df = pd.DataFrame([('Snooker', 'South', 4), ('Snooker', 'South', 5), ('Badminton', 'South', 6),
    ('Snooker', 'North', 14), ('Snooker', 'North', 12), ('Badminton', 'North', 18), ('Badminton', 'North', 28),
    ('Football', 'South', 6), ('Football', 'South', 7),
    ('Frisbee Golf', 'South', 3),
    ('Football', 'North', 11),
    ('Frisbee Golf', 'North', 11),
    ('Football', 'North', 12), ('Football', 'North', 20),
    ], columns=['Sport', 'Area', 'Score'])

df2 = (
    df.groupby(['Sport', 'Area'])
    ['Score']
    .mean())

df2.unstack(level=1)

df2.plot()
plt.title('Average Sport Score')

plt.ylim(0)

plt.show()

Level 0 of 
multi-index is 
‘Sport’ and 1 is 

‘Area’ so 
unstack ’Area’ 

part into 
columns
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Tuple results unpacked into cols
Strategy - make a data frame and set new columns to it – simple :-)

df = pd.DataFrame({'nums': [1,2,3,4]})
def powers(num):
    return num ** 2, num ** 3
data = df.nums.apply(powers).to_list()
df_square_cube = pd.DataFrame(data, index=df.index)
df[['square', 'cube']] = df_square_cube
   nums  square  cube
0     1       1     1
1     2       4     8
2     3       9    27
3     4      16    64

Makes a list of one-item 
tuples from a list of 

items
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Delete rows with missing values
>>> data [('Jo', 1, 5), ('Sam', None, None), ('Avi', None, 3),
   ('Noor', 4, None), ('Cat', 6, 6)]
>>> df = pd.DataFrame(data, columns=['name', 'start', 'end'])
>>> df
   name  start  end
0    Jo    1.0  5.0
1   Sam    NaN  NaN
2   Avi    NaN  3.0
3  Noor    4.0  NaN
4   Cat    6.0  6.0
>>> df.dropna(subset=['start', 'end'])
  name  start  end
0    Jo    1.0  5.0
1   Sam    NaN  NaN
2   Avi    NaN  3.0
3  Noor    4.0  NaN
4   Cat    6.0  6.0
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Delete rows with missing values
>>> data [('Jo', 1, 5), ('Sam', None, None), ('Avi', None, 3),
   ('Noor', 4, None), ('Cat', 6, 6)]
>>> df = pd.DataFrame(data, columns=['name', 'start', 'end'])
>>> df
   name  start  end
0    Jo    1.0  5.0
1   Sam    NaN  NaN
2   Avi    NaN  3.0
3  Noor    4.0  NaN
4   Cat    6.0  6.0
>>> df.dropna(subset=['start', 'end'])
  name  start  end
0    Jo    1.0  5.0
1   Sam    NaN  NaN
2   Avi    NaN  3.0
3  Noor    4.0  NaN
4   Cat    6.0  6.0

x x
xx
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Delete rows with missing values
>>> data [('Jo', 1, 5), ('Sam', None, None), ('Avi', None, 3),
   ('Noor', 4, None), ('Cat', 6, 6)]
>>> df = pd.DataFrame(data, columns=['name', 'start', 'end'])
>>> df
   name  start  end
0    Jo    1.0  5.0
1   Sam    NaN  NaN
2   Avi    NaN  3.0
3  Noor    4.0  NaN
4   Cat    6.0  6.0
>>> df.dropna(subset=['start', 'end'])
  name  start  end
0    Jo    1.0  5.0
1   Sam    NaN  NaN
2   Avi    NaN  3.0
3  Noor    4.0  NaN
4   Cat    6.0  6.0

x x
xx
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Delete rows with missing values
>>> data [('Jo', 1, 5), ('Sam', None, None), ('Avi', None, 3),
   ('Noor', 4, None), ('Cat', 6, 6)]
>>> df = pd.DataFrame(data, columns=['name', 'start', 'end'])
>>> df
   name  start  end
0    Jo    1.0  5.0
1   Sam    NaN  NaN
2   Avi    NaN  3.0
3  Noor    4.0  NaN
4   Cat    6.0  6.0
>>> df.dropna(subset=['start', 'end'])
  name  start  end
0    Jo    1.0  5.0

4   Cat    6.0  6.0
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Delete rows with missing values
>>> data [('Jo', 1, 5), ('Sam', None, None), ('Avi', None, 3),
   ('Noor', 4, None), ('Cat', 6, 6)]
>>> df = pd.DataFrame(data, columns=['name', 'start', 'end'])
>>> df
   name  start  end
0    Jo    1.0  5.0
1   Sam    NaN  NaN
2   Avi    NaN  3.0
3  Noor    4.0  NaN
4   Cat    6.0  6.0
>>> df.dropna(subset=['start', 'end'])
  name  start  end
0    Jo    1.0  5.0
4   Cat    6.0  6.0
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Misc
Pandas has a rich syntax and some very 
useful functionality

We’ve covered a lot of useful techniques 
but Pandas has much more to offer.

Good luck exploring!
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Pandas – 
powerful 
and flexible

Thanks Wes McKinney!
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Thank You

© 2019 Qrious
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