
Qriou
s

Pandas for
“Dummies”*

* The title is clearly a lie – Pandas is quite tricky

Qriou
s

Why Pandas?
● You need a specialised toolkit for data

analysis
● It’s a Python library so it’s easy to integrate

other Python goodness
● custom functions
● other Python libraries
● plotting etc

Qriou
s

Why not Pandas?
● Pure Python might be better - Pandas might

be overkill in your case
● SQL might be better in your case

● SQL is sufficient for the analysis you are conducting
● You might be more familiar with SQL
● Other people in your team are more familiar with SQL

Qriou
s

Is Pandas easy
to learn?

Qriou
s

Is Pandas easy
to learn?

Short answer: No

Qriou
s

Is Pandas easy
to learn?

The long answer is the rest
of the presentation ;-)

Qriou
s

Ted Petrou https://medium.com/dunder-data/minimally-sufficient-pandas

“Pandas is
 powerful but
 difficult to use”

Qriou
s

“[In Python] There should be one-- and preferably
 only one --obvious way to do it”
 Tim Peters – The Zen of Python

“I find that the Pandas library disobeys this [obviousness]
guidance more than any other library I have encountered”
 Ted Petrous – Minimally Sufficient Pandas

But in Pandas there are often many ways of
achieving the same result – typically only

obvious to experienced Pandas practitioners

Qriou
s

Ted Petrou https://medium.com/dunder-data/minimally-sufficient-pandas

“Pandas is
 powerful but
 difficult to use”

Qriou
s

Pandas may or may not be
intuitive to you
● Numpy or matrices experience? Pandas is built on

Numpy so Numpy is a good starting point
● SQL experience? Very different but some great

resources*
● R data frame experience? Helps and hurts.
● Python experience? Helps and hurts.
* A very different approach but there is good help for the transition. See:
 https://medium.com/jbennetcodes/how-to-rewrite-your-sql-queries-in-pandas-and-more-149d341fc53e

Qriou
s

Ted Petrou https://medium.com/dunder-data/minimally-sufficient-pandas

“Pandas is
 powerful but
 difficult to use”

Qriou
s

80/20 rule
● Pandas has a very rich and expressive syntax
● But it is like learning a completely new language

● even if you already know Python
● sometimes contradicts Python conventions

● The 80/20 rule applies – you can get 80% done
knowing only 20%

● But what a 20% it is! The minimum amount of understanding
required to be comfortable with Pandas is reasonably high

● Dangerous being a “Stack Overflow” Pandas coder

Qriou
s

 Pandas Coder

Symptoms
● Never sure why code actually works
● Actually, not even sure if code does work
● Will try random changes (adding brackets, removing brackets,

axis=0 becomes 1 and back again etc) in hope it will fix things
● Unable to safely change Pandas code without lots of checking
● Code riddled with non-obviousness resulting in bewildering bugs

Moto - “Hmmmm - I wonder if this will work?”

Qriou
s

 Pandas Coder

● Possibly safe when:
● Checking results in Jupyter Notebook as you go
● Small datasets where errors are easy to see
● Nobody else has to work on the code later

● But not safe for production code

Qriou
s

Key Pandas concepts are your pitons
● Don’t hope your code

is doing the right thing

● Know your code is
correct through
confident reasoning
from solid knowledge

● Pandas has gotchas
which make this
challenging

A piton

Qriou
s

aspects of Pandas
it pays to properly
understand**

** i.e. have such a rock-solid understanding of the concepts that
 you can reason about what your code will do with confidence

8

Qriou
s

● You won’t remember most of this

● Focus on general concepts / terms so you can
look up details later and refresh your memory

Key insights

Qriou
s

DataFrames are tables on steroids

fname lname age
0 Sam Smith 23
1 Jo Singh 12
...

Columns

Rows

1

Qriou
s

DataFrames are tables on steroids

fname lname age
0 Sam Smith 23
1 Jo Singh 12
...

Columns

Rows

Indexes

1

Column labels

Qriou
s

DataFrames are tables on steroids

fname lname age
0 Sam Smith 23
1 Jo Singh 12
...

Columns

Rows

Indexes

Built-in
functionality

1

Column labels

Qriou
s

Using DataFrames
Lots of handy, built-in methods e.g.

.groupby()

.to_csv()

.multiply()

.fillna()

.transpose()

.pivot()

Tricky operation made easy and semantic in
Pandas – you don’t have to work through the

code to understand what is happening

Qriou
s

Creating DataFrames
Multiple ways to create data frames e.g.
● List of row tuples
df = pd.DataFrame([(1,2), (3,4)], columns=['a', 'b'])

 See docs on pd.DataFrame.from_records()

● Dict of columns
df = pd.DataFrame({'a': (1,2), 'b': (3,4)})

 See docs on pd.DataFrame.from_dict()

● Read a CSV file
df = pd.read_csv('data.csv')

Qriou
s

DataFrames are a collection of
labelled Series

Jo

Sam

Raj

Moana

name

23

45

12

67

age

Auckland

Christchurch

Dunedin

Wellington

city

df = ()

df.age = 23 45 12 67

Each column is
a labelled Series

A Series is like a
list on steroids

Qriou
s

Your assumptions about
row indexes & col labels
are probably false

2

Qriou
s

No guarantee of uniqueness

country region country

2 NZ Auckland NZ

1 UK Essex UK

2 Canada Victoria Canada

15 USA Maine USA

0 USA Maine USA

0 Canada Ontario Canada

Column labels not
guaranteed to be

unique

Row indexes
not guaranteed

to be unique

Qriou
s

No guarantee of order

country region country

2 NZ Auckland NZ

1 UK Essex UK

2 Canada Victoria Canada

15 USA Maine USA

0 USA Maine USA

0 Canada Ontario Canada

Legitimate, but
unordered index

Qriou
s

No guarantee of order
Indexes 2, 1, 2, 15, 0, 0 !

df.loc[0] isn’t the first row?! And it’s actually two rows?!
I thought Pandas was like Python! Come back SQL – all is forgiven!

country region country

2 NZ Auckland NZ

1 UK Essex UK

2 Canada Victoria Canada

15 USA Maine USA

0 USA Maine USA

0 Canada Ontario Canada

Qriou
s

Default behaviour misleading
Default indexes and column labels are zero-based indexes e.g.

df = pd.DataFrame([('a', 'b', 'c'), ('d', 'e', 'f')])

 0 1 2

 0 a b c

 1 d e f

But once defined they are arbitrary labels and can be put out of
order, repeated etc. E.g. df = df.append([('x', 'y', 'z'),])

 0 x y z

Not explicitly
defining an index
or column labels

Index and column
labels automatically

added

0 again!

Qriou
s

Training often correct but misleading

1) slicing example

2) item selection example

From a Jupyter Notebook in an
on-line tutorial on Pandas

Qriou
s

Training often correct but misleading

To show the risks I’ve
made versions of the df
which have duplicate

indexes – let’s see what
happens

Version 1 – some
duplicate 5s

Version 2 –
all “a”s

Qriou
s

Training often correct but misleading

1) Correct – Pandas always
takes first N – ignores index Note – df.loc[]

behaves differently!
1) slicing example

Qriou
s

Training often correct but misleading

BUSTED!
Correct in example but misleading.
Pandas collects by index label (not

position). Can contain duplicates or fail
More details later on how

to avoid confusion

2) item selection example

Qriou
s

Indexing not like Python
● Totally unlike sequences in Python where 0 ALWAYS

refers to the first item
● Thinking in Python can actually mislead you in Pandas

!=

Qriou
s

What to do?
df.reset_index() will set new zero-based index

Or when concatenating or appending, use ignore_index=True

But most importantly,

always remember: there are
no guarantees about
uniqueness or order

Qriou
s

Axis 0 is downwards; Axis 1 is across

0

1

fname lname age

0 Sam Smith 23

1 Jo Singh 12

...

3

Qriou
s

df.sum(axis=0) 0 a b c

0 10 15 23

1 25 3 12

35 , 18 , 35

E.g. axis & .sum()

Sum values
downwards through rows

i.e. sum the columns

Returns a Series

Qriou
s

df.sum(axis=0) 0 a b c

0 10 15 23

1 25 3 12

35 18 35

df.sum(axis=1)

Sum values across cols
i.e. sum rows

1

E.g. axis & .sum()

a b c

0 10 15 23

1 25 3 12

48

40

Sum values
downwards through rows

i.e. sum the columns

Qriou
s

df.apply(max, axis=0) 0 a b c

0 10 15 23

1 25 3 12

df.apply(max, axis=1)

Apply function to values
across cols i.e. values in a row 1

Same with axis & .apply()

a b c

0 10 15 23

1 25 3 12

Apply function to values
going downwards i.e.

per column 25 15 23

23

25

The max of each col

Qriou
s

0 downwards

1 across

Qriou
s

Operations can apply to multiple values at once

Can make a change to all elements in a table at
once without looping through rows and columns
E.g. multiplying everything by 10 all at once

2.5 3.6

1.2 11.09 * 10 =
25 36

12 110.9

4

Qriou
s

● Multi-element operations are one of the coolest things
about Pandas

● But with great power
comes great pain ;-)

● Code can be hard to interpret

● Fortunately, a clear understanding
of key concepts really helps

Key insights

Qriou
s

Terminology
● Pandas has vector operations

● about super-efficient, all-at-once operations
● about what happens under the hood – not just a synonym for

operations which propagate across axes or elements
● Changes propagate (whether across an axis or

individual elements in an axis / series)
● We broadcast changes across an axis

(specifically about operations between Series and
Data Frames in Pandas)

● Element-wise operations process every indiv value

Qriou
s

Element-wise functions
● Element-wise functions operate on every individual element

e.g. Numpy’s absolute value function:

2 111

-1 -100

● Pandas also has a syntax for applying functions to entire
columns or rows

np.abs()

=
2 111

1 100

np.abs(2) np.abs(111)

np.abs(-1) np.abs(-100)=
Like running the function on
each value separately but

optimised for efficiency

Qriou
s

Standard row or col functions
● .sum(), for example, automatically sums per column

● .sum() also totals rows if axis = 1 e.g. .sum(axis=1)

20 404

30 101).sum()(

= 50 505

20

30sum()
404

101sum()=

Axis 0 is the default

Summing all values
downwards by column

A Series – only one
axis – like a list

Qriou
s

Pandas can combine individual values &
aggregates through vectorisation
● df / df.sum() does something interesting and useful
● Every column in df is divided by the sum of that column
● And because division is vectorised, it is like dividing

every value in the column by the sum of that column
● Nice – we have a column % :-)

Qriou
s

Pandas can combine individual values &
aggregates through vectorisation
● df / df.sum() does something interesting and useful
● Every column in df is divided by the sum of that column
● And because division is vectorised, it is like dividing

every value in the column by the sum of that column
● Nice – we have a column % :-)
● Confused? Once again with pictures!

Qriou
s

Example combining indiv values & aggregates
20 404

30 101

20 404

30 101/ .sum()1) df / df.sum()
(same as df / df.sum(axis=0)

Qriou
s

Example combining indiv values & aggregates
20 404

30 101

20 404

30 101/ .sum()
20 404

30 101
 20
 30

 404
 101

().sum() ().sum()/

1) df / df.sum()
(same as df / df.sum(axis=0)

2) .sum() applied downwards
 in df i.e. to each column

Resolving denominator first

Tackle numerator later

Qriou
s

Example combining indiv values & aggregates
20 404

30 101

20 404

30 101/ .sum()
20 404

30 101
 20
 30

 404
 101

().sum() ().sum()/

 50 505
20 404

30 101 //

1) df / df.sum()
(same as df / df.sum(axis=0)

2) .sum() applied downwards
 in df i.e. to each column

3) Series returned

Qriou
s

Example combining indiv values & aggregates
20 404

30 101

20 404

30 101/ .sum()
20 404

30 101
 20
 30

 404
 101

().sum() ().sum()/

 50 505
20 404

30 101 /

 20
 30

 404
 101() / 50 () / 505

/

1) df / df.sum()
(same as df / df.sum(axis=0)

2) .sum() applied downwards
 in df i.e. to each column

3) Series returned

4) Division of each col by
 matching sum val in series

We broadcast the Series [50, 505]
across the df columns.

More on broadcasting later.

Qriou
s

Example combining indiv values & aggregates
20 404

30 101

20 404

30 101/ .sum()
20 404

30 101
 20
 30

 404
 101

().sum() ().sum()/

 50 505
20 404

30 101 /

 20
 30

 404
 101() / 50 () / 505

20 / 50 404 / 505

30 / 50 101 / 505

/

20 / 50 404 / 505

30 / 50 101 / 505

1) df / df.sum()
(same as df / df.sum(axis=0)

2) .sum() applied downwards
 in df i.e. to each column

3) Series returned

4) Division of each col by
 matching sum val in series

5) Same as div of each val in col
 by matching sum val in series

Qriou
s

Example combining indiv values & aggregates
20 404

30 101

20 404

30 101/ .sum()
20 404

30 101
 20
 30

 404
 101

().sum() ().sum()/

 50 505
20 404

30 101 /

 20
 30

 404
 101() / 50 () / 505

20 / 50 404 / 505

30 / 50 101 / 505

/

20 / 50 404 / 505

30 / 50 101 / 505

0.4 0.8

0.6 0.2

1) df / df.sum()
(same as df / df.sum(axis=0)

2) .sum() applied downwards
 in df i.e. to each column

3) Series returned

4) Division of each col by
 matching sum val in series

5) Same as div of each val in col
 by matching sum val in series

6) SUCCESS!!

Qriou
s

Example combining indiv values & aggregates
 df / df.sum()

Note - there is a safer and more
readable way of writing this

I’ll demonstrate soon

You’ll find lots of code like this in
Stack Overflow so you might as well

be a little bit familiar with it

Qriou
s
Qrious

Broadcasting safety
message

© 2019 Qrious

Qriou
s

Broadcasting step by step

1 2

3 4

5 6

7 8

9 10

11 12

+ 10 100 =
11 102

13 104

15 106

17 108

19 110

21 112

Refresher – broadcasting is applying an operation (e.g.
addition) between a Series and a Data Frame

Qriou
s

Broadcasting step by step

10 100 =
11 102

13 104

15 106

17 108

19 110

21 112

10 100

1 2

3 4

5 6

7 8

9 10

11 12

Matches axis 1
and broadcasts
downwards along axis 0

1 2

3 4

5 6

7 8

9 10

11 12

1 2

3 4

5 6

7 8

9 10

11 12

+

result

Qriou
s

Broadcasting step by step

10 100 =
11 102

13 104

15 106

17 108

19 110

21 112

10 100

1 2

3 4

5 6

7 8

9 10

11 12

11 102

3 4

5 6

7 8

9 10

11 12

+
1 2

3 4

5 6

7 8

9 10

11 12

+

result

Qriou
s

Broadcasting step by step

10 100 =
11 102

13 104

15 106

17 108

19 110

21 112

10 100

1 2

3 4

5 6

7 8

9 10

11 12

11 102

13 104

5 6

7 8

9 10

11 12

1 2

3 4

5 6

7 8

9 10

11 12

+
+

result

Qriou
s

Broadcasting step by step

10 100 =
11 102

13 104

15 106

17 108

19 110

21 112

10 100

1 2

3 4

5 6

7 8

9 10

11 12

11 102

13 104

15 106

7 8

9 10

11 12

1 2

3 4

5 6

7 8

9 10

11 12

+
+

result

Qriou
s

Broadcasting step by step

10 100 =
11 102

13 104

15 106

17 108

19 110

21 112

10 100

1 2

3 4

5 6

7 8

9 10

11 12

11 102

13 104

15 106

17 108

9 10

11 12

1 2

3 4

5 6

7 8

9 10

11 12

+
+

result

Qriou
s

Broadcasting step by step

10 100 =
11 102

13 104

15 106

17 108

19 110

21 112

10 100

1 2

3 4

5 6

7 8

9 10

11 12

11 102

13 104

15 106

17 108

19 110

11 12

1 2

3 4

5 6

7 8

9 10

11 12

+
+

result

Qriou
s

Broadcasting step by step

10 100 =
11 102

13 104

15 106

17 108

19 110

21 112

10 100

1 2

3 4

5 6

7 8

9 10

11 12

11 102

13 104

15 106

17 108

19 110

21 112

1 2

3 4

5 6

7 8

9 10

11 12

+
+

result

Qriou
s

Explicit syntax available
To specify matching axis explicitly use a different syntax

1 2

3 4

5 6

7 8

9 10

11 12

.add(, axis=1) = 10 100

11 102

13 104

15 106

17 108

19 110

21 112Same result as earlier but
matching axis is more explicit

Qriou
s

Can now broadcast across cols
Broadcasting is downwards by default – need to set
matching axis to 0 to broadcast across cols

1 2

3 4

5 6 .add(, axis=0) = 10 100 1000

11 12

103 104

1005 1006

Qriou
s

Can now broadcast across cols
Broadcasting is downwards by default – need to set
matching axis to 0 to broadcast across cols

1 2

3 4

5 6 .add(, axis=0) = 10 100 1000

11 12

103 104

1005 1006

10

100

1000

1 2

3 4

5 6

1 2

3 4

5 6

result

Qriou
s

Can now broadcast across cols
Broadcasting is downwards by default – need to set
matching axis to 0 to broadcast across cols

1 2

3 4

5 6 .add(, axis=0) = 10 100 1000

11 12

103 104

1005 1006

10

100

1000

11 2

103 4

1005 6

+
1 2

3 4

5 6

result

Qriou
s

Can now broadcast across cols
Broadcasting is downwards by default – need to set
matching axis to 0 to broadcast across cols

1 2

3 4

5 6 .add(, axis=0) = 10 100 1000

11 12

103 104

1005 1006

10

100

1000

11 12

103 104

1005 1006

+
1 2

3 4

5 6

result

Qriou
s

Explicit is better than implicit
If you don’t specify matching axis explicitly you might successfully
broadcast down the wrong axis if the shape has the same number
of rows and cols.

So ... in the interests of readable, maintainable code, always use the
explicit syntax in code you are keeping / maintaining

And remember – you are specifying the matching axis, not what it is
broadcasting over

Note – the default matching axis is 1 not 0

.add(, axis=0)

Qriou
s

Improving code from an earlier slide

df / df.sum() Elegant but
opaque

Qriou
s

Improving code from an earlier slide

df / df.sum()

df / df.sum(axis=0)

The creation of col
totals is now explicit

is equivalent to

Qriou
s

Improving code from an earlier slide

df / df.sum()

df / df.sum(axis=0)

df.div(df.sum(axis=0), axis=1)

Everything explicit but mix of axis
0 and 1 potentially confusing

is equivalent to

is equivalent to

Qriou
s

Improving code from an earlier slide

df / df.sum()

df / df.sum(axis=0)

df.div(df.sum(axis=0), axis=1)

s_col_tots = df.sum(axis=0)

df.div(s_col_tots, axis=1)

is equivalent to

is equivalent to

is equivalent to

Qriou
s

Improving code from an earlier slide

s_col_tots = df.sum(axis=0)

df.div(s_col_tots, axis=1)

This part is responsible for collecting col
totals (summing downwards along axis 0).

Nice and explicit.

Separate responsibilities
– easier to understand

Qriou
s

Improving code from an earlier slide

s_col_tots = df.sum(axis=0)

df.div(s_col_tots, axis=1)

This part is responsible
for dividing each value

by its column total.

We can tell there is broadcasting – we are combining a
DataFrame and a Series in the same (division) operation.
Recognising broadcasting when you see it really helps.

It does this by broadcasting division of the col totals.
The col totals match on the columns (axis 1) and

broadcast downwards across axis 0. Success!

Qriou
s

Improving code from an earlier slide

s_col_tots = df.sum(axis=0)

df.div(s_col_tots, axis=1)

Still have to correctly interpret the code but at least
now you have a fighting chance, step by step.

Qriou
s

Matching axis

1 2

3 4

5 6

7 8

9 10

10 100

When broadcasting, the Series must have the same length as the matching
axis for the DataFrame

a
10 100 1000

b
10 100 1000 10000

c
10 100 1000 10000

d
10 100 1000 10000 100000

e

Series ‘a’ is the right length (2) to
 match df axis 1 and broadcast
downwards across axis 0. So

df.add(a, axis=1)
will work

df

Qriou
s

Matching axis

1 2

3 4

5 6

7 8

9 10

10 100

When broadcasting, the Series must have the same length as the matching
axis for the DataFrame

a
10 100 1000

b
10 100 1000 10000

c
10 100 1000 10000

d
10 100 1000 10000 100000

ex x x

df

Don’t match either axis of df

Qriou
s

Matching axis

1 2

3 4

5 6

7 8

9 10

10 100

When broadcasting, the Series must have the same length as the matching
axis for the DataFrame

a
10 100 1000

b
10 100 1000 10000

c
10 100 1000 10000

d
10 100 1000 10000 100000

e

df

Series ‘e’ is the right length
(5) to match df axis 0 and
broadcast across
axis 1. So

df.add(e, axis=0)
will work.

Qriou
s
Qrious

.applymap(), .apply(),
& functions

© 2019 Qrious

Qriou
s

.applymap()
● Applies a function to every element in a data frame
● Don’t use applymap if there is a vectorised alternative. The

vectorised version is easier to read, less typing, and much faster
e.g. squaring every value

● Lambda (anonymous) functions are often used with .applymap()
e.g. df.applymap(lambda x: x**2)

● Must use .apply() instead for Series (in which case no axis
needed or allowed)

xdf ** 2 df.applymap(lambda x: x**2)

Qriou
s

.apply()
● .apply() also expects a function
● The function always processes either cols or rows

● ... so there needs to be an axis (0 is the default i.e. per
column operations)

 e.g. df.apply(sum_the_row, axis=1)

Qriou
s

.apply() and Series
● Don’t accidentally run .apply(..., axis=...) on a

Series – will get a possibly confusing error like
“ ’axis’ is an invalid keyword argument”

● Sometimes .apply() is overkill

 df.age.apply(lambda x: x < 10)

 df.age < 10

are the same – both return a Series where age < 10

Preferred –
easier to read

Qriou
s

.apply() is flexible

The function supplied can work with:
● the row or col as a whole e.g.
col.sum()

● or values identified by index (if in col)
or col label (if in row) e.g.
row['Sat'] + row['Sun']
row.Sat + row.Sun

● or a combination e.g.
row.Sat / row.sum()

Qriou
s

.apply() and propagating functions

● return x / x.sum()
return col / col.sum()

● all individual values in the row or col if the function vectorises
e.g. multiplying each element by 4

return col * 4

x is commonly used but it is more explicit and
readable to use col (or row) as appropriate

But ... if the function is vectorised then why use .apply()? Might be better
to directly apply the function to the data frame! Faster, less typing, easier
to read. Note – .apply() makes it easier to work with cols if you don’t
want to transpose data – df / df.sum() etc apply division row-by-row.

Functions can (in effect) operate on individual values if they can be
propagated across the row or col they operate on. E.g. division

Qriou
s

Why .apply() often works element-wise
If a function propagates it will effectively work element-wise
e.g. def square(item): return item ** 2

2 5

-1 -6
().apply(square)

=
4 25

1 36

square(2) square(5)

square(-1) square(-6)=

2

-1
square() square()

5

-6
=

Axis 0 (per column) is
the default

Qriou
s

Functions with named values
Functions can reference labels in the row or column

df = pd.DataFrame([(12.5, 23), (17, 25)], columns=['Sat', 'Sun'])

 Sat Sun
0 12.5 23
1 17.0 25

def get_weekend_tot(row):
 return row['Sat'] + row['Sun']

df['weekend'] = df.apply(get_weekend_tot, axis=1)

 Sat Sun weekend
0 12.5 23 35.5
1 17.0 25 42.0

Qriou
s

Functions that aggregate
Functions can aggregate the row or col or use aggregations

df = pd.DataFrame([(12.5, 23), (17, 25)], columns=['Sat', 'Sun'])

 Sat Sun
0 12.5 23
1 17.0 25

def col_pct(col):
 return (100 * col) / col.sum()

df[['Sat col pct', 'Sun col pct']] = df.apply(
 col_pct, axis=0).round()

 Sat Sun Sat col pct Sun col pct
0 12.5 23 42.0 48.0
1 17.0 25 58.0 52.0

Qriou
s

.loc[] is good for
safely filtering
rows & columns

5

Qriou
s

Filtering can be by content or label
● Filtering by content

e.g. all rows where fruit is “banana”

● Filtering by label

e.g. all columns ending in “_monthly”

e.g. rows with index between 100 and 200

Qriou
s

Filtering options compared

df[]

df.loc[]

df.iloc[]

.filter()

df.query()

Qriou
s

Filtering options compared

df[]

df.loc[]

df.iloc[]

.filter()

df.query()

Filtering on data
frame directly~

Only safe for column filtering when there are clear
labels e.g. df['region']. Otherwise too many

gotchas to be safe in production code

Qriou
s

Filtering options compared

df[]

df.loc[]

df.iloc[]

.filter()

df.query()

~
Flexible and explicit –

recommended

Qriou
s

Filtering options compared

df[]

df.loc[]

df.iloc[]

.filter()

df.query()

~
Not as useful as df.loc[] especially given
availability of df.head() and df.tail().

Probably more valuable in a focused
mathematical / engineering contextx

Qriou
s

Filtering options compared

df[]

df.loc[]

df.iloc[]

.filter()

df.query()

~

Most semantic choice for
label-based (col labels or

row indexes) filtering

x

Qriou
s

Filtering options compared

df[]

df.loc[]

df.iloc[]

.filter()

df.query()

~

Newer addition to
Pandas – has its own

mini-language

x

Qriou
s

Filtering options compared

df[]

df.loc[]

df.iloc[]

.filter()

df.query()

General-purpose so
the main focus here

Qriou
s

df.loc[[100, 300], ['b', 'c']]

Row filtering

Using .loc to filter rows and cols

Column filtering

Note – double
square brackets

Qriou
s

The rows we want
[100, 300]

df.loc[[100, 300], ['b', 'c']]

a b c d

 0

100

200

300

Using .loc to filter rows and cols

Qriou
s

df.loc[[100, 300], ['b', 'c']]

 0

100

200

300

a b c d

The columns we want
['b', 'c']

Using .loc to filter rows and cols

a b c d

 0

100

200

300

Qriou
s

df.loc[[100, 300], ['b', 'c']]

 0

100

200

300

a b c d

Using .loc to filter rows and cols

a b c d

 0

100

200

300

 0

100

200

300

a b c d

The intersections of
row and column

filtering are selected

Qriou
s

Powerful but strange syntax
● Numpy-flavoured syntax for filtering

● whether you find that intuitive or not depends on your
previous experience

● Pandas filtering can be very different from Numpy filtering**
● Gotchas

● some design decisions for convenience at expense of consistency
● consistency with Numpy trumps consistency with Python

** Make a Numpy array and a Pandas DataFrame from the same date: data = [(1,2), (3,4), (5,6)]
When a Numpy array, np_data[1] = array([3, 4]) because 1 refers to the row index
When a Pandas DataFrame, df_data[1] = Pandas Series [2, 4, 6] because 1 refers to column label
Very different :-(

Qriou
s

.loc[] has square brackets
● Square brackets instead of parentheses

● Why? A Numpy-derived short-hand
e.g. instead of my_array[2][0] we write my_array[2, 0]

● Standard parentheses with named parameters such as
rows and cols would have been more Pythonic i.e.
readable

Qriou
s

.loc[] is label-based
● Selection is based on row indexes and/or column labels
● So if we have a data frame with 1, 3, 3 as index labels we can’t

select df.loc[2] (or there will be a KeyError)

apple 1 2019 36.1 Jo

banana 2 2018 27.5 Moana

cherry 3 2019 19.7 Sam

fruit num date weight name

1

3

3

Available
labels

● And if an index or col label is repeated, filtering will include
everything that matches e.g. df.loc[3] will return two rows

● Slicing is by label so we cannot use [:-1] etc as in normal Python – it
is actually from one label to another

Unless boolean filtering
– more on that later

Qriou
s

Always rows first (then columns)
● This guarantee is what makes .loc[] the safe

choice for production

● Not as explicit as keyword parameters in
standard Python functions

Qriou
s

.loc[] always needs rows
Can’t just select columns using .loc[] - must use slice :
to refer to all rows e.g.

df.loc[: , ['lname', 'fname']]

will return a data frame for the lname and fname
columns only but for all rows

Row filtering Column filtering

Qriou
s

.loc[] is safer than df[]

● Narrows down the range of quirks to be understood – more than
enough to master in .loc[]

● Mixing different approaches can be confusing – similar syntaxes
yield completely different results

Don’t use df[] in production code for
filtering by content. Use .loc[] or .query()

Qriou
s
Qrious

Gotchas** where similar syntax
but very different results

© 2019 Qrious

** Identifying gotchas is not necessarily a criticism – sometimes design trade-offs have to be made
and there are contradictory principles to achieve consistency with. But they are still gotchas ;-)

Qriou
s

[] vs .loc[]

● df[0] vs df.loc[0]

● df[0] is the column with the label 0 i.e. the Series [‘apple’, ‘cherry’]
● df.loc[0] is the row with the label 0 i.e. the Series [‘apple’, ‘banana’]

0 1

0 apple banana

1 cherry date
df =

0 1

0 apple banana

1 cherry date

df.loc[0]

df[0]

Qriou
s

.loc[] vs .iloc[]

● df.loc[0:1] vs df.iloc[0:1]

● df.loc[0:1] includes both ends because it is label-based not
index-based so is [(‘apple’, ‘banana’), (‘cherry’, ‘date’)]

● df.iloc[0:1] excludes the final index value like typical Python so is
[(‘apple’, ‘banana’)] only

0 1

0 apple banana

1 cherry date

df =

0 1

0 apple banana

1 cherry date
df.loc[0:1] df.iloc[0:1]

Qriou
s

Slicing confusion

● df[0] = ['apple', 'date']

● df[0:1] = ['apple', 'banana', 'cherry'] **

0 1 2

0 apple banana cherry

1 date elderberry fig

df =

** Slicing inside df[] slices rows. The official justification - “This is provided largely as a convenience since it is such a common operation”
https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html. The Pandas creator notes the tension in “Python for Data Analysis” -
“This might seem inconsistent for some readers , but this syntax arose out of practicality and nothing more” (p.127)

0 1 2

0 apple banana cherry

1 date elderberry fig
df[0:1]

df[0]

Qriou
s
Qrious

More powerful filtering

© 2019 Qrious

Qriou
s

More powerful filtering
● Pandas allows very flexible filtering using .loc[]

● e.g. df.loc[
 (df.year.isin([2017, 2018])
 &
 (df.age == 'Senior')]

● More on that after discussion of boolean filtering

● Consider .query() as an alternative

Qriou
s

.query()
● A mini-language e.g. backticks for column names with gaps,

@ for variables in scope etc

● Added more recently than .loc[] so using .query() doesn’t mean
you can ignore .loc[] - it appears in examples, existing code etc

● Good documentation:

 https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.query.html

 http://jose-coto.com/query-method-pandas

Qriou
s

.query() examples
● Example of .loc[] vs .query():

 grades_df.loc[grades_df.Test_3.isin([98, 99, 100])]

 grades_df.query("Test_3 in [98, 99, 100]")

● Can use “and” and “or” in query and usual operator precedence

applies so no need to add extra parentheses (as in .loc[])

 df.query("year == 2019 and suburb in ('Mt Albert', 'Mt Eden')")

●

Qriou
s

Boolean filtering is important

F T TrueFalse

6

Qriou
s

Boolean filtering illustrated

apple 1 2019 36.1 Jo

banana 2 2018 27.5 Moana

cherry 3 2019 19.7 Sam

T F F T F

F T TrueFalse

Boolean
array

Data
frame

Qriou
s

Boolean filtering illustrated

apple 1 2019 36.1 Jo

banana 2 2018 27.5 Moana

cherry 3 2019 19.7 Sam

T F F T F

apple 36.1

banana 27.5

cherry 19.7

F T TrueFalse
Applying boolean
array to columns

“False” columns
will be removed

Qriou
s

Boolean filtering illustrated

apple 1 2019 36.1 Jo

banana 2 2018 27.5 Moana

cherry 3 2019 19.7 Sam

T F F T F

apple 36.1

banana 27.5

cherry 19.7

apple 1 2019 36.1 Jo

banana 2 2018 27.5 Moana

cherry 3 2019 19.7 Sam

T

F

T

apple 1 2019 36.1 Jo

cherry 3 2019 19.7 Sam

F T TrueFalse

“False” rows will
be removed

Boolean array
applied to rows

Qriou
s

Must match dimensions of data in axis

apple 1 2019 36.1 Jo

banana 2 2018 27.5 Moana

cherry 3 2019 19.7 Sam

Obviously the boolean array needs to have the same
number of values as the axis being filtered

xx

x
x

?
?

?
?

Qriou
s

Boolean filtering restrictions

apple 1 2019 36.1 Jo

banana 2 2018 27.5 Moana

cherry 3 2019 19.7 Sam

● Any single boolean filter is for rows or columns only
(not both at same time)

● Can’t apply a boolean matrix to filter the data frame the same way you
might apply a data frame matrix to another data frame matrix

● But can use two boolean filters in .loc[] - one for rows and one for cols

fruit num date weight name

Can’t apply this
DataFrame as a boolean

filter, for example

Qriou
s

Conditional filtering is boolean filtering

apple 1 2019 36.1 Jo

banana 2 2018 27.5 Moana

cherry 3 2019 19.7 Sam

● You can have one boolean filter for rows in the first part of loc[]
and another by cols in the second

● e.g. filtering rows by fruit == ‘cherry’

and cols by columns.str.startswith(‘w’)

fruit num date weight name

apple

banana

cherry

fruit num date weight name

Qriou
s

Passing in boolean indexes

apple 1 2019 36.1 Jo

banana 2 2018 27.5 Moana

cherry 3 2019 19.7 Sam

The following are equivalent:
● df.loc[df.fruit == 'cherry', df.columns.str.startswith('w')]

● df.loc[,]
apple

banana

cherry
fruit num date weight name

apple

banana

cherry

fruit num date weight name

 weight
0 19.7

Qriou
s

Multiple conditions
● Use parentheses
● Use parentheses (yes – seriously!)
● Don’t use and or or – instead use & and |
● e.g. df.loc[(df.year == 2019) & (df.age == 'Senior')]

Qriou
s

How a DataFrame is filtered affects
what is returned

If filtering for one column only the default is to return a Series

data = [
 (1, 2),
 (3, 4),
]

df = DataFrame(data, columns=['a', 'b'])

df.loc[: , 'b']

Series [2, 4]

7

Qriou
s

Data = [
 (1, 2),
 (3, 4),
]

df = DataFrame(data, columns=['a', 'b'])

● To get back a DataFrame pass in a list of columns
(albeit with only one column inside)

df.loc[: , ['b']]

DataFrame [[2], [4]] (vs Series [2, 4])

● Sometimes .to_frame() will be useful to turn a series into a DataFrame

How to guarantee a DataFrame

Same source
DataFrame

Qriou
s

Check if changes are persisting
● In Pandas it is not always clear if changes will persist or not
● df 0 1

 0 a b
 1 c d

● df.append([('e', 'f')]. ignore_index=True)

● df? 0 1 0 1

 0 a b OR 0 a b
 1 c d 1 c d
 2 e f

8

Qriou
s

Check if changes are persisting
● In Pandas it is not always clear if changes are persisting or not
● df 0 1

 0 a b
 1 c d

● df.append([('e', 'f')]. ignore_index=True)

● df? 0 1 0 1

 0 a b OR 0 a b
 1 c d 1 c d
 2 e f

8

x

Qriou
s

Filtering data frames returns views
● Applying an operation on a filtered data frame is operating on

the same parts of the original data frame

i.e. what you do matters! If you want to operate on a copy,
use .copy()

Qriou
s

If you’re not sure ...

 CHECK!

Qriou
s

Eight key concepts
1) DataFrames are enhanced tables with

rows and columns (like spreadsheets)
2) Row indexes and column labels are not

guaranteed unique or in order
3) Axis 0 is downwards through rows; axis 1

is across columns
4) Operations can be applied to multiple

elements / rows/ cols without looping

8

Qriou
s

Eight key concepts
5) Prefer .loc[] for filtering
6)Become comfortable with Boolean

filtering
7) Know when you’re getting back a

Series or a Data Frame
8)Ensure you know if changes are

persisting or not

8

Qriou
s

Practical
tasks

Qriou
s

CSVs – reading and writing
● pd.read_csv()

● df.to_csv(..., index=False) ## index=False
stops the index being added as the first column

● ‘sep’ and ‘delimiter’ are synonymous parameters

Qriou
s

Demo DataFrame for next slides
Source dataframe:
df
 year city suburb club age freq fees
0 2017 Auckland Mt Albert MABC Senior 33.0 2000
1 2017 Auckland Mt Albert MABC Junior 70.0 2300
2 2018 Auckland Mt Albert MABC Senior 39.0 2100
3 2018 Auckland Mt Albert MABC Junior NaN 2450
4 2019 Auckland Mt Albert MABC Senior 40.0 2200
5 2019 Auckland Mt Albert MABC Junior 70.0 2750
6 2016 Auckland Mt Albert MABC Senior 33.0 2000
7 2015 Auckland Mt Albert MABC Junior 70.0 2300
8 2018 Auckland Mt Eden Gillies Ave BC Senior 120.0 3000
9 2018 Auckland Mt Eden Gillies Ave BC Junior 234.0 5000
10 2019 Auckland Mt Eden Gillies Ave BC Senior 124.0 3100
11 2019 Auckland Mt Eden Gillies Ave BC Junior 265.0 5575
12 2018 Wellington Mirimar MBC Senior 67.0 1100
13 2018 Wellington Mirimar MBC Junior 183.0 2200
14 2019 Wellington Mirimar MBC Senior 66.0 1000
15 2019 Wellington Mirimar MBC Junior 187.0 2350

Qriou
s

Making new calculated columns
df_extra = df.copy()

df_extra['tot_fees'] = (df_extra.fees * df_extra.freq).round()

Note – can’t use dot notation for new field’s name

df_extra.head(5)
 year city suburb club age freq fees tot_fees
0 2017 Auckland Mt Albert MABC Senior 33.0 2000 66000.0
1 2017 Auckland Mt Albert MABC Junior 70.0 2300 161000.0
2 2018 Auckland Mt Albert MABC Senior 39.0 2100 81900.0
3 2018 Auckland Mt Albert MABC Junior NaN 2450 NaN
4 2019 Auckland Mt Albert MABC Senior 40.0 2200 88000.0

Note – we can’t .astype('int') tot_fees because of NaN in field
https://pandas.pydata.org/pandas-docs/stable/user_guide/gotchas.html#support-for-integer-na

Qriou
s

Controlling columns produced
● .drop() can drop individual columns or a list of columns e.g.
df.drop(columns='year')
df.drop(columns=['year', 'age'])

● The columns dropped are only actually removed from the data
frame if we set inplace=True - otherwise it is only on what is returned

● When you calculate a new field you want to be able to give it a
useful name. You may also want to override the names supplied in
the original inputs. .rename() is useful e.g.
df.rename(columns={'year': 'year_of_play'})

● If you want to reset all the column names it might be easiest to set
the columns attribute directly e.g. df.columns = [‘year_of_play’, etc]

Qriou
s

Grouping
● See https://www.shanelynn.ie/

summarising-aggregation-and-grouping-data-in-python-pandas/
● .groupby() returns a special DataFrameGroupBy object which you

can't really "see" e.g. by printing it. But it lets you get all sorts of
interesting results.

● The easiest is by using the .describe() method on it.
● Note - you can't filter describe to only display results for selected column labels only

data types. To specify individual fields to use do filtering earlier
● Examples

● df.groupby('year').describe()
● df.loc[:, 'freq'].describe()

Qriou
s

Grouping – selecting columns

df.loc[:, ['year', 'freq']].groupby('year').describe()

 freq
 count mean std min 25% 50% 75% max
year
2015 1.0 70.000000 NaN 70.0 70.00 70.0 70.00 70.0
2016 1.0 33.000000 NaN 33.0 33.00 33.0 33.00 33.0
2017 2.0 51.500000 26.162951 33.0 42.25 51.5 60.75 70.0
2018 5.0 128.600000 80.568604 39.0 67.00 120.0 183.00 234.0
2019 6.0 125.333333 86.226833 40.0 67.00 97.0 171.25 265.0

Filtered columns before passing
through to .groupby() and .describe()

Qriou
s

.count()

df.groupby('year').count()
 city suburb club age freq fees
year
2015 1 1 1 1 1 1
2016 1 1 1 1 1 1
2017 2 2 2 2 2 2
2018 6 6 6 6 5 6
2019 6 6 6 6 6 6

.count() counts all NON-missing values whereas .size() counts
ALL values including missing

There is one
missing value

in the freq
column

Qriou
s

.size()

df.groupby('year').size()
year
2015 1
2016 1
2017 2
2018 6
2019 6

.size() is for the df as a whole, not for each column

Qriou
s

.first() and .last()

df.groupby('suburb').first()
 year city club age freq fees
suburb
Mirimar 2018 Wellington MBC Senior 67.0 1100
Mt Albert 2017 Auckland MABC Senior 33.0 2000
Mt Eden 2018 Auckland Gillies Ave BC Senior 120.0 3000

These methods use the order of the data frame they are
based on. You may need to apply sort_values()
beforehand

Qriou
s

.min() and .max()

df.groupby('suburb').min()
 year city club age freq fees
suburb
Mirimar 2018 Wellington MBC Junior 66.0 1000
Mt Albert 2015 Auckland MABC Junior 33.0 2000
Mt Eden 2018 Auckland Gillies Ave BC Junior 120.0 3000

df.groupby('suburb').max()
 year city club age freq fees
suburb
Mirimar 2019 Wellington MBC Senior 187.0 2350
Mt Albert 2019 Auckland MABC Senior 70.0 2750
Mt Eden 2019 Auckland Gillies Ave BC Senior 265.0 5575

Note that this method works on strings as well as
numbers

Qriou
s

.groupby fields

df.groupby('city').sum()[['freq']].add_prefix('Sum_of_')

 Sum_of_freq
city
Auckland 1098.0
Wellington 503.0

Note that this method works on strings as well as
numbers

Qriou
s

Flexible aggregation

df.groupby('city').agg({'fees': 'sum', 'freq': 'max'})
 fees freq
city
Auckland 34775 265.0
Wellington 6650 187.0

We can get different aggregate types for different fields e.g. min for one
and max for another. In SQL it is easy. How do we do it in pandas? We
need to pass in a dictionary.

The result will have correct aggregate results but the labels will need
fixing. Time to use .rename() again.

Qriou
s

Custom aggregation
Aggregation functions take in multiple items and
return a single item e.g. mean handles the numbers
in the aggregated field which are in the group and
returns a single arithmetic mean

list deserves special mention – it gathers up the
results into a single list

You can also use your own functions (named or
anonymous lambdas) to do anything you want to
the gathered values – as long as a single value is
returned

2
716

43

[2, 16, 43, 7]

Qriou
s

Updating
df3 = df.copy()

df3.loc[3:4, ['fees', 'freq']] = df3.loc[3:4, ['fees', 'freq']].multiply(100)

df3.head(7)
 year city suburb club age freq fees
0 2017 Auckland Mt Albert MABC Senior 33.0 2000
1 2017 Auckland Mt Albert MABC Junior 70.0 2300
2 2018 Auckland Mt Albert MABC Senior 39.0 2100
3 2018 Auckland Mt Albert MABC Junior NaN 245000
4 2019 Auckland Mt Albert MABC Senior 4000.0 220000
5 2019 Auckland Mt Albert MABC Junior 70.0 2750
6 2016 Auckland Mt Albert MABC Senior 33.0 2000

Qriou
s

Union joining (appending)
● .concat([df1, df2, ...])

● axis=0 (rows) for appending (the default), axis = 1
(columns) for putting alongside

● https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html

● Need same column names if trying to append
(unlike SQL UNION) – otherwise all NaNs in the
non-aligned cells
●

Qriou
s

Appending without compatible cols
Demo DataFrame to append:

●

df2 = pd.DataFrame(
 [[2020, 'Christchurch', 'Yaldhurst', 'YBC', 'Junior', 199, 2_700],])

df2
 0 1 2 3 4 5 6
0 2020 Christchurch Yaldhurst YBC Junior 199 2700

Note different column labels compared
with df we’re concatenating with

Qriou
s

Faulty concatenated data

df3 = pd.concat([df2, df])

df3.head(3)
 0 1 2 3 ... fees freq suburb year
0 2020.0 Christchurch Yaldhurst YBC ... NaN NaN NaN NaN
0 NaN NaN NaN NaN ... 2000.0 33.0 Mt Albert 2017.0
1 NaN NaN NaN NaN ... 2300.0 70.0 Mt Albert 2017.0

Oops! We have all the columns from both
data frames and NaNs filling in all the

mismatched areas :-(

Qriou
s

Correctly concatenated data
Ensuring compatible columns:
df2 = pd.DataFrame(
 [[2020, 'Christchurch', 'Yaldhurst', 'YBC', 'Junior', 199, 2_700],],
 columns=df.columns)

df2
 year city suburb club age freq fees
0 2020 Christchurch Yaldhurst YBC Junior 199 2700

df3 = pd.concat([df2, df])

Success because of aligned column names:
df3.head(3)
 year city suburb club age freq fees
0 2020 Christchurch Yaldhurst YBC Junior 199.0 2700
0 2017 Auckland Mt Albert MABC Senior 33.0 2000
1 2017 Auckland Mt Albert MABC Junior 70.0 2300

Qriou
s

Labels matter, not order
Compatible columns but inconsistent order (swapped year and city):

df2 = pd.DataFrame(
 [['Christchurch', 2020, 'Yaldhurst', 'YBC', 'Junior', 199, 2_700],],
 columns=['city', 'year', 'suburb', 'club', 'age', 'freq', 'fees'])

df2
 city year suburb club age freq fees
0 Christchurch 2020 Yaldhurst YBC Junior 199 2700

df3 = pd.concat([df2, df], sort=False)

Succeeded even though columns out of order:
df3.head(3)
 city year suburb club age freq fees
0 Christchurch 2020 Yaldhurst YBC Junior 199.0 2700
0 Auckland 2017 Mt Albert MABC Senior 33.0 2000
1 Auckland 2017 Mt Albert MABC Junior 70.0 2300

Qriou
s

Joining on a key

● Like an inner join in SQL
● merge is what is usually needed unless joining on index
(.join() will do)

● See https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html

Qriou
s

Example join
df2 = pd.DataFrame([('Auckland', 'Fuel tax'),], columns=['city', 'Tax'])

df2
 city Tax
0 Auckland Fuel tax

pd.merge(left=df, right=df2, how='left', on='city')
 year city suburb club age freq fees Tax
0 2017 Auckland Mt Albert MABC Senior 33.0 2000 Fuel tax
1 2017 Auckland Mt Albert MABC Junior 70.0 2300 Fuel tax
...
6 2016 Auckland Mt Albert MABC Senior 33.0 2000 Fuel tax
7 2015 Auckland Mt Albert MABC Junior 70.0 2300 Fuel tax
8 2018 Auckland Mt Eden Gillies Ave BC Senior 120.0 3000 Fuel tax
...
11 2019 Auckland Mt Eden Gillies Ave BC Junior 265.0 5575 Fuel tax
12 2018 Wellington Mirimar MBC Senior 67.0 1100 NaN
...

Qriou
s

Column percentages
Strategy – make a data frame of calculated percentages
and set it as a new column

df['pct_freq'] = (
 df.freq
 .apply(lambda col: (100 * col) / col.sum())
 .round(2)
)

df['pct_freq'] = (
 df.freq
 .multiply(100)
 .div(
 df.freq.sum()
).round(2)
)

Because df.freq is a Series .apply()
will not accept an axis argument

A more elegant
alternative

Qriou
s

Column percentages by group
Strategy – make df with totals by group and join it to df using group as key.
Then set new column to results of simple calculation of percentages.

df_yearly_freq_sum = (
 df.groupby(['year'])
 .agg({'freq': 'sum'})
 .add_prefix('tot_')
)

df_yearly_freq_sum
 tot_freq
year
2015 70.0
2016 33.0
...

df3 = pd.merge(df, df_yearly_freq_sum, on='year')

Using an easily
understood** join ready for

simple percentage
calculation

** Especially by people
 with SQL experience

Qriou
s

Column percentages by group ...
df3['annual_freq_pct'] = (100*(df3.freq / df3.tot_freq)).round()

df3.loc[:, ['year', 'city', 'suburb', 'club', 'age', 'freq', 'annual_freq_pct']]
 .sort_values(['year', 'city', 'suburb', 'club', 'age'])
 .reset_index(drop=True).head()

 year city suburb club age freq annual_freq_pct
0 2015 Auckland Mt Albert MABC Junior 70.0 100.0
1 2016 Auckland Mt Albert MABC Senior 33.0 100.0
2 2017 Auckland Mt Albert MABC Junior 70.0 68.0
3 2017 Auckland Mt Albert MABC Senior 33.0 32.0
4 2018 Auckland Mt Albert MABC Junior NaN NaN

Data frame already has
percentages calculated – just

selecting columns to display and
resetting index after sorting

Tip - .reset_index() is also a
great way of turning a multi-
index into columns (e.g. after

a groupby operation)

Qriou
s

Row percentages
df_hrs = pd.DataFrame(
 [('Jo', 36, 6, 6, 6.5, 7, 5), ('Sam', 24, 4, 7, 7, 0, 4)],
 columns=['worker', 'age', 'mon', 'tue', 'wed', 'thur',
'fri'])

df_hrs
 worker age mon tue wed thur fri
0 Jo 36 6 6 6.5 7 5
1 Sam 24 4 7 7.0 0 4

And make a spare one for a comparison later

df_hrs2 = df_hrs.copy()

Qriou
s

Row percentages ...
.sum() will total all numeric fields so you may need to filter the columns first.
In this example we have added another numeric field we do not want
included in total (age) but we have failed to filter it out from the data being
summed.

df_hrs['tot_hrs'] = df_hrs.sum(axis=1)

df_hrs

 worker age mon tue wed thur fri tot_hrs

0 Jo 36 6 6 6.5 7 5 66.5

1 Sam 24 4 7 7.0 0 4 46.0

Oops! Let’s do it again with age removed from the data being summed

x!

Qriou
s

Row percentages ...
df_hrs2['tot_hrs'] = df_hrs2.drop('age', axis=1).sum(axis=1)

df_hrs2

 worker age mon tue wed thur fri tot_hrs

0 Jo 36 6 6 6.5 7 5 30.5

1 Sam 24 4 7 7.0 0 4 22.0

Qriou
s

Plotting two columns
from matplotlib import pyplot as plt

df = pd.DataFrame(
 {'day': [92, 250, 317,
 241, 503, 640, 444],
 'night': [156, 228, 300,
 178, 900, 87, 122]},
 index=['Mon', 'Tue',
 'Wed', 'Thu', 'Fri',
 'Sat', 'Sun'])
df.plot()
plt.ylim(0)
plt.show()

Qriou
s

Plotting result of aggregation
from matplotlib import pyplot as plt
df = pd.DataFrame([('Snooker', 'South', 4), ('Snooker', 'South', 5), ('Badminton', 'South', 6),
 ('Snooker', 'North', 14), ('Snooker', 'North', 12), ('Badminton', 'North', 18), ('Badminton', 'North', 28),
 ('Football', 'South', 6), ('Football', 'South', 7),
 ('Frisbee Golf', 'South', 3),
 ('Football', 'North', 11),
 ('Frisbee Golf', 'North', 11),
 ('Football', 'North', 12), ('Football', 'North', 20),
], columns=['Sport', 'Area', 'Score'])

df2 = (
 df.groupby(['Sport', 'Area'])
 ['Score']
 .mean())

df2.unstack(level=1)

df2.plot()
plt.title('Average Sport Score')

plt.ylim(0)

plt.show()

Level 0 of
multi-index is
‘Sport’ and 1 is

‘Area’ so
unstack ’Area’

part into
columns

Qriou
s

Tuple results unpacked into cols
Strategy - make a data frame and set new columns to it – simple :-)

df = pd.DataFrame({'nums': [1,2,3,4]})
def powers(num):
 return num ** 2, num ** 3
data = df.nums.apply(powers).to_list()
df_square_cube = pd.DataFrame(data, index=df.index)
df[['square', 'cube']] = df_square_cube
 nums square cube
0 1 1 1
1 2 4 8
2 3 9 27
3 4 16 64

Makes a list of one-item
tuples from a list of

items

Qriou
s

Delete rows with missing values
>>> data [('Jo', 1, 5), ('Sam', None, None), ('Avi', None, 3),
 ('Noor', 4, None), ('Cat', 6, 6)]
>>> df = pd.DataFrame(data, columns=['name', 'start', 'end'])
>>> df
 name start end
0 Jo 1.0 5.0
1 Sam NaN NaN
2 Avi NaN 3.0
3 Noor 4.0 NaN
4 Cat 6.0 6.0
>>> df.dropna(subset=['start', 'end'])
 name start end
0 Jo 1.0 5.0
1 Sam NaN NaN
2 Avi NaN 3.0
3 Noor 4.0 NaN
4 Cat 6.0 6.0

Qriou
s

Delete rows with missing values
>>> data [('Jo', 1, 5), ('Sam', None, None), ('Avi', None, 3),
 ('Noor', 4, None), ('Cat', 6, 6)]
>>> df = pd.DataFrame(data, columns=['name', 'start', 'end'])
>>> df
 name start end
0 Jo 1.0 5.0
1 Sam NaN NaN
2 Avi NaN 3.0
3 Noor 4.0 NaN
4 Cat 6.0 6.0
>>> df.dropna(subset=['start', 'end'])
 name start end
0 Jo 1.0 5.0
1 Sam NaN NaN
2 Avi NaN 3.0
3 Noor 4.0 NaN
4 Cat 6.0 6.0

x x
xx

Qriou
s

Delete rows with missing values
>>> data [('Jo', 1, 5), ('Sam', None, None), ('Avi', None, 3),
 ('Noor', 4, None), ('Cat', 6, 6)]
>>> df = pd.DataFrame(data, columns=['name', 'start', 'end'])
>>> df
 name start end
0 Jo 1.0 5.0
1 Sam NaN NaN
2 Avi NaN 3.0
3 Noor 4.0 NaN
4 Cat 6.0 6.0
>>> df.dropna(subset=['start', 'end'])
 name start end
0 Jo 1.0 5.0
1 Sam NaN NaN
2 Avi NaN 3.0
3 Noor 4.0 NaN
4 Cat 6.0 6.0

x x
xx

Qriou
s

Delete rows with missing values
>>> data [('Jo', 1, 5), ('Sam', None, None), ('Avi', None, 3),
 ('Noor', 4, None), ('Cat', 6, 6)]
>>> df = pd.DataFrame(data, columns=['name', 'start', 'end'])
>>> df
 name start end
0 Jo 1.0 5.0
1 Sam NaN NaN
2 Avi NaN 3.0
3 Noor 4.0 NaN
4 Cat 6.0 6.0
>>> df.dropna(subset=['start', 'end'])
 name start end
0 Jo 1.0 5.0

4 Cat 6.0 6.0

Qriou
s

Delete rows with missing values
>>> data [('Jo', 1, 5), ('Sam', None, None), ('Avi', None, 3),
 ('Noor', 4, None), ('Cat', 6, 6)]
>>> df = pd.DataFrame(data, columns=['name', 'start', 'end'])
>>> df
 name start end
0 Jo 1.0 5.0
1 Sam NaN NaN
2 Avi NaN 3.0
3 Noor 4.0 NaN
4 Cat 6.0 6.0
>>> df.dropna(subset=['start', 'end'])
 name start end
0 Jo 1.0 5.0
4 Cat 6.0 6.0

Qriou
s

Misc
Pandas has a rich syntax and some very
useful functionality

We’ve covered a lot of useful techniques
but Pandas has much more to offer.

Good luck exploring!

Qriou
s

Pandas –
powerful
and flexible

Thanks Wes McKinney!

Qriou
s

Thank You

© 2019 Qrious

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Section Title
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Thank You

